Takotsubo Cardiomyopathy in Chronic Kidney Disease

Dear Editor,

A 59-year-old female with prolonged history of analgesic abuse was diagnosed with chronic kidney disease (CKD) stage 5 while being evaluated for generalized weakness and normocytic normochromic anemia. Twice-weekly maintenance hemodialysis was initiated with tunneled hemodialysis catheter. She presented with sudden-onset palpitations and shortness of breath. She had pallor, sinus tachycardia, tachypnea, and hypoxia and her blood pressure was 140/90 mmHg. Jugular veins were distended. On systemic examination, breath sounds were diminished in bilateral lung bases and S3 gallop was heard. A 12-lead electrocardiogram (ECG) revealed sinus tachycardia. Cardiac biomarkers were normal. A 2-D echocardiogram revealed large right-sided pleural effusion, severe dysfunction and ballooning of the left ventricle, and mild pulmonary hypertension. Wall motion pattern revealed akinetic true apex, hypokinetic antero-apical and infero-apical segments, and normal basal segments. A coronary angiogram revealed normal coronaries. Right heart catheterization revealed mild ventricular hypertrophy and patent pulmonary artery. A diagnosis of nonischemic cardiomyopathy, possibly takotsubo cardiomyopathy (TKCM), was made. She was treated with diuretics, beta-blockers, and dialysis. A clinical psychologist helped her recover from emotional stress that she faced while initiating hemodialysis. She recovered well with treatment, and a follow-up echocardiogram after 3 months revealed normal heart function.

CKD patients are at risk for cardiovascular disease (CVD). Sympathetic nervous system (SNS) hyperactivity and elevated catecholamine levels are commonly seen in CKD.^[1,2] Elevated catecholamine level in CKD is associated with increased risk of CVD and all-cause mortality.^[1] SNS overactivity and elevated catecholamines are known to play key role in the pathogenesis of TKCM (also known as stress cardiomyopathy).^[1,2]

TKCM, derived from the Japanese term "octopus pot," is predominantly reported in elderly women and rarely in men, who suffer emotional or physical stress.^[2] and is characterized by left ventricular dysfunction, ECG changes of ST-segment elevation, deep T wave inversion, and elevated cardiac biomarkers.^[3] Complete recovery of the left ventricular function has been reported in almost all cases of TKCM.^[2] Catecholamine-mediated plaque rupture and wrap around left anterior descending (LAD) artery were initially thought to cause TKCM. However, due to low plaque burden in TKCM patients and as the non-apical variants of TKCM could not be explained by wrap-around LAD, these theories were disregarded.^[4] spasm-induced ischemia has been attributed to apical ballooning and midventricular variety of TKCM.^[4] This theory derives justification further from the fact that the ventricular dysfunction in TKCM is not restricted to a single coronary artery territory.^[3,4] Coronary microvascular dysfunction secondary to neurohumoral changes has been noted in TKCM.^[3,4] However, it is not clear if microvascular dysfunction is a cause or an effect of TKCM. Reduced SERCA2 activity, which has a key function in intracellular calcium homeostasis, has been observed in TKCM.^[5] The role of estrogen deficiency on heart in stressful states is yet to be understood and may possibly explain the gender predilection in TKCM.^[5] Studies have revealed the protective effect of estradiol in emotional stress-induced structural changes of heart.^[5] Mental and physical stress add to the burden of SNS hyperactivity and possibly contribute to the propensity for TKCM.^[6] Low levels of serum antioxidants are noted in patients with CKD, and hemodialysis may further deplete their levels. and trigger TKCM.^[7] Acute kidney injury is also reported in TKCM.^[7] The prognosis of patients with TKCM is generally favorable; however, complications occur in about 20% of cases, and a case of left ventricular free wall rupture and death associated with TKCM has been reported.^[3,4]

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Varun G. Bansal

Nephrology, NMC Hospital, Dubai, United Arab Emirates

Address for correspondence: Dr. Varun G. Bansal, NMC Hospital, Behind Falcon House, Dubai Investment Park-1, PO Box 7832, Dubai, United Arab Emirates. E-mail: dr.varun07@gmail.com

References

- Manolis AJ, Poulimenos LE, Kallistratos MS, Gavras I, Gavras H. Sympathetic overactivity in hypertension and cardiovascular disease. Curr Vasc Pharmacol 2014;12:4-15.
- Fukui M, Mori Y, Tsujimoto S, Takehana K, Sakamoto N, Kishimoto N, *et al.* 'Takotsubo' cardiomyopathy in a maintenance hemodialysis patient. Ther Apher Dial 2006;10:94-100.
- 3. Akashi YJ, Tejima T, Sakurada H, Matsuda H, Suzuki K, Kawasaki K, *et al.* Left ventricular rupture associated with Takotsubo cardiomyopathy. Mayo Clin Proc 2004;79:821-4.

- 4. Muratsu J, Morishima A, Ueda H, Hiraoka H, Sakaguchi K. Takotsubo cardiomyopathy in two patients without any cardiac symptom on maintenance hemodialysis. Case Rep Nephrol 2013;2013:1-7.
- Brenner R, Weilenmann D, Maeder MT, Jörg L, Bluzaite I, Rickli H, *et al*. Clinical characteristics, sex hormones, and long-term follow-up in Swiss postmenopausal women presenting with Takotsubo cardiomyopathy. Clin Cardiol 2012;35:340-7.
- Perrett C, Banerjee D. Takotsubo syndrome in the dialysis patient - challenging diagnosis in a unique population. Indian J Nephrol 2019;29:385-6.
- Kariyanna PT, Borhanjoo P, Jayarangaiah A, Haseeb S, Shenoy A, Hegde S, et al. Takotsubo cardiomyopathy and chronic kidney disease: A scoping study. Scifed J Cardiol 2018;2:20.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Access this article online	
Quick Response Code:	Website: https://journals.lww.com/ijon
	DOI: 10.4103/ijn.ijn_370_22

How to cite this article: Bansal VG. Takotsubo cardiomyopathy in chronic kidney disease. Indian J Nephrol 2023;33:406-7.

Received: 21-11-2022; Revised: 09-02-2023; Accepted: 15-02-2023; Published: 04-08-2023 © 2023 Indian Journal of Nephrology | Published by Wolters Kluwer - Medknow