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and cis‑binding element is important. The transcription 
factors maintain the fine regulatory control both for the 
tissue development and pathophysiology.[2] In recent 
years, these have been targeted as potential therapeutic 
targets for certain disease.[3]

Cell culture experiments and animal models have helped 
in identification of novel transcription factors for kidney 
development in maintaining homeostasis.[4,5] Role of 
transcription factors varies in different tissues depending 
on their development, whether early or later at stage. 
With respect to eukaryotes, transcription involves a 
complete array of different and specific interactions 
among nuclear proteins and DNA elements located in the 
promoter or enhancer region of genes.[6] Transcription 
factors being limited to specific types of lineage or 
to a whole tissue activate various genes sequentially 
during kidney development, thereby sustaining the 
integrity of a normal kidney.[7] Many transcription 
factors may be mutated or have abnormal expression 
causing congenital abnormalities of the kidneys such as 
renal agenesis, cysts, hypoplasia, dysplasia and ureteric 
malformations [Table 1].

Hepatocyte nuclear factor‑1 (HNF‑1), a nuclear protein, 
was first identified in hepatocytes as a regulator of gene 
transcription of β chain of fibrinogen.[22] It represents a 
family of transcription factors consisting of HNF‑1α and 
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ABSTRACT

The understanding of the genomics of the renal tissue has gathered a considerable interest and is making rapid progress. The molecular 
mechanisms as well as the precise function of the associated molecular components toward renal pathophysiology have recently 
been realized. For the cystic kidney disease, the regulation of gene expression affecting epithelial cells proliferation, apoptosis as well 
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the renal tissue homeostasis. This review focuses on providing comprehensive information about the transcriptional regulatory role 
of hepatocyte nuclear factor‑1β, a homeoprotein, as well as its interacting partners in renal tissue development and pathophysiology.
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Introduction

Kidneys play a crucial role in maintaining fluid 
homeostasis and excreting waste products. Changes 
that affect kidney functions are reflected by altered 
renal filtration system, often leading to end‑stage renal 
disease (ESRD). Today, millions of individuals globally 
suffer from ESRD and need renal transplant therapy.[1]

Kidney has been used as a classical model to study tissue 
morphogenesis. Genetic disorders of kidney reflecting 
abnormal development have been studied in conjunction 
with gene expression and regulation. In this regard, 
understanding the role of both the trans‑acting factors 
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HNF‑1β. Both these factors have been characterized as 
mutual nuclear proteins interacting with a single crucial 
element of the albumin promoter. HNF‑1α was found 
only in liver or differentiated hepatoma cells, while 
HNF‑1β was present in dedifferentiated hepatoma cells 
as well as in somatic cell hybrids that showed extinction 
of liver‑specific proteins, including albumin.[23] However, 
their role during kidney development and in cystogenesis 
through regulation of cystic genes have revealed the 
importance of these proteins in renal tissue homeostasis.

Hepatocyte Nuclear Factor‑1: Structure and 
Domains

HNF‑1 family members, HNF‑1α and HNF‑1β, share 
conserved N‑terminal dimerization domain structure, a 
Pit‑1/Oct‑1/Unc‑86 (POU) domain and a homeodomain 
for DNA binding and a less‑conserved C‑terminal 
dimerization domain allowing binding of homo‑  or 
hetero‑dimerization of the HNF‑1 proteins.[24]

HNF‑1α is expressed as a single 631 amino acid 
polypeptide located at chromosome 12, and HNF‑1β is 
expressed as two polypeptides having 557 amino acids 
placed on chromosome 17.[25] First amino acids of the 
polypeptide chain of the proteins promote dimerization 
of the two proteins during transcription activation. 
POU domain  (55–60 amino acids), which cultivates 
DNA binding, is located adjacent to the dimerization 
domain  [Figure  1]. Both of these interacting partners 
either work independently of each other as homodimers 
or work in specific ratios as heterodimers in regulating 
their concerned genes.[26] The genes for HNF‑1s have been 
highly conserved throughout vertebrate evolution.[27] 
Extensive conservation is seen in the dimerization domain 
and DNA binding domain, but both the proteins differ in 
their thermostability and their molecular weight, even 

though they display same sequence specificities often 
recognizing the same consensus palindromic sequence 
5’‑GTTAATNATTAAC‑3’[28‑30] when forming heterodimers. 
Moreover, there are reports suggesting against the strict 
requirement for the palindromic sequence for binding of 
HNF‑1α to the promoter region of genes from different 
organisms.[31]

Hepatocyte Nuclear Factor‑1β Expression During 
Early Development

HNF‑1β has attracted attention for its role in early 
development and nephrogenesis as HNF‑1α remains 
confined to hepatocyte development. It has been 
demonstrated that between the two proteins, the 
expression of HNF‑1β precedes that of HNF‑1α gene 
during embryogenesis, appearing at embryonic day 
10.5  (E10.5).[32‑34] Although the endodermally derived 
structures, the foregut and the hindgut, lack messenger 
RNA  (mRNA) expression, the midgut endodermally 
derived structures as well as the mesoderm‑derived 
structures, such as the kidneys, express HNF‑1β mRNAs. 
Inductive influence of HNF‑1β along with its partners 
at certain stages may be required for organogenesis as 
they control the lateral plate mesoderm on the midgut 
endoderm.[35] Nullzygous mutant embryos have normal 
placement of parietal endoderm like cells on abnormal 

Figure  1: Hepatocyte nuclear factor‑1  (HNF‑1) structure and domains. 
HNF‑1α is expressed as a single polypeptide of 631 amino acids and HNF‑1 β 
is expressed as two polypeptides of 557 amino acids. HNF‑1: Hepatocyte 
nuclear factor‑1; DIM: Dimerization domain; POUs: Pit‑1, Onc and 
Unc specific domain; POUH: Pit‑1, Onc and Unc‑homeodomain; 
TAD: Transactivation domain; NLS: Nuclear localization signal

Table 1: Human mutant gene expression resulting into abnormal renal morphogenesis
Gene Disease Mutant phenotype/disease in kidney Reference
HNF‑1β RCAD syndrome Kidney cysts, hypoplasia, dysplasia, hyperuricemia [8]
PKD1, PKD2 ADPKD Cysts [9]
Polaris Abnormal location of cilia Cysts [10]
Tgfβ2 Cystic overgrowth Affecting branching termination and tubule maintenance [11]
Jagged1 Alagille syndrome Cystic dysplasia [12]
Gpc3 Simpson‑Golabi‑Behmel syndrome Overgrowth of cysts [11]
Egfr Cysts due to overexpression Affecting branching termination and tubule maintenance [13]
Tgfα Overexpression leads to cyst Abnormal ureteric bud development [14]
Pa×2 Wilms tumor, renal‑coloboma Nephroblastoma, hypoplasia, VUR [15]
Wnt4 Kidney dysgenesis Small kidney dysgenesis [16]
Pod1 Hypoplasia 61% decreased branching [17]
FRAS1 Fraser syndrome Agenesis, dysplasia [18]
PEX1 Zellweger syndrome VUR, cystic dysplasia [19]
GATA3 HDR syndrome Dysplasia [20]
So×9 Campomelic dysplasia Dysplasia, hydronephrosis [21]
RCAD: Renal cysts and diabetes, ADPKD: Autosomal dominant polycystic kidney disease, VUR: Vesicoureteral reflux, HNF‑1β=Hepatocyte nuclear factor‑1β, 
HDR: Hypoparathyroidism, sensorineural deafness and renal anomalies, Egfr: Epidermal growth factor receptor
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basal membrane, but show no activation of its other 
co‑activators, HNF‑4α, HNF‑3α and HNF‑1α, and die in 
utero. Many of the transient rodent models also showed 
earliest detection of HNF‑1β mRNAs in the mouse 
primitive endoderm 4.5  days post‑coitus followed by 
its expression in the yolk sac and developing gut.[31,36] 
This reflects the action of HNF‑1β in the primitive 
endoderm required for specification of visceral endoderm. 
Transgenic mice deficient in HNF‑1β develop normally till 
blastocyst stage and die soon thereafter. Its inactivation in 
the mouse shows lethality in the embryo approximately 
at day 7.5 due to visceral endoderm differentiation and 
abnormal extra‑embryonic region.[37] Both endodermal 
and mesodermal structures express HNF‑1β pattern that 
reflects its involvement in embryonic segmental pattern. 
Many of the mice models devoid of HNF‑1β, having 
restored its early expression using tetraploid embryo 
complementation, show normal pancreas morphogenesis 
and liver specification.[38]

Hepatocyte Nuclear Factor‑1β: A Kidney Positive 
Transcription Factor

In vertebrates the pronephros, the mesonephros and 
the metanephros are formed progressively during 
development. Xenopus laevis is the most attractive 
model to analyze the molecular and cellular events in 
the pronephros formation. The genes for HNF‑1s are 
highly conserved during the vertebrate evolution and 
show high‑sequence conservation among species and 
also similarity to the frog, Xenopus.[39,40] Expressed as an 
early marker of kidney development, HNF‑1β is deeply 
involved in morphogenetic events. Overexpression of 
frameshift HNF‑1β mutant P28L32fsdelCCTCT showed 
associated nephron agenesis in Xenopus larvae.[41] Likewise 
introduction of mutant form of HNF‑1β into the developing 
frog embryo lead to partial or even complete agenesis of 
the pronephric tubules and duct. Pre‑eminent position of 
HNF‑1β in the regulatory network of differentiation during 
early embryogenesis reveals the importance of HNF‑1β in 
developmentally regulated processes consistent with its 
early expression in primitive endoderm.

Kidney, an HNF‑1β‑positive tissue, expresses it early 
during development leading to activation of numerous 
genes involved in embryogenesis. Although HNF‑1α 
is also expressed during the development of kidney, 
its role remains confined to genes transcribing 
glucose‑6‑phosphate transporter, and having significantly 
reduced mRNA levels.[42] The function and characterization 
of HNF‑1β was first highlighted when human mutations 
were examined causing maturity‑onset diabetes of the 
young  (MODY).[43,44] Therefore, its transcriptional role 
required for precise metabolic control was emphasized by 

analyzing insulin release by β‑cells and hence, suggesting 
its wider role in influencing MODY5 due to added 
mutations. Although first identified as a “liver enriched” 
transcription factor, its role in kidney became apparent 
upon observation of renal abnormalities seen due to 
mutations and deficiency of HNF‑1β in humans as well as 
experimental and transgenic animal models while studying 
MODY5. Its expression during kidney organogenesis 
reflects its importance during interaction between 
epithelium of the ureter and condensed mesenchymal 
cells.[45] HNF‑1β is expressed in all segments of nephrons 
and renal collecting ducts[37,46] and hence, crucial for 
kidney organogenesis. Moreover, identification of HNF‑1β 
gene products to the primary cilium provided interesting 
observations as the deregulation of the primary ciliary 
processes are important for cystogenesis. Thus, many 
of the HNF‑1β‑targeted proteins, which also co‑localize 
to primary cilium form important group of proteins for 
understanding cyst development and expansion. Although 
a predominant role of HNF‑1β has been highlighted 
in recent years controlling kidney organogenesis and 
associated disease afflictions, more clear insight into the 
transcription role of HNF‑1β in regulation of cystic genes, 
polycystic kidney disease (PKD) 2, PKHD1, UMOD, and 
KIF show its direct binding to their promoters. Most of 
these genes are co‑localized to primary cilium as well. 
Transgenic mice lacking endogenous expression of 
HNF‑1β showed cyst formation and down‑regulation of 
PKD2, PKHD1, IFT88 (Polaris), and UMOD.[47‑49] HNF‑1β 
transcriptional binding sites have been identified in the 
promoter regions of kidney‑specific cadherin (ksp‑cdh), 
cdh 16 and Na‑K‑Cl co‑transporter,[50] existing mostly 
upstream of transcriptional start sites. Many of the 
kidney‑specific expression of transporters involve 
coordinated regulation of HNF‑1β and DNA methylation. 
The organic anion transporters (OATs) OAT1/SLC22A6, 
OAT3/SLC22A8 and urate transporter expressed 
predominantly in the kidney and placenta are directly 
transcribed by HNF‑1β.[51‑53] Any of the mutant form of 
HNF‑1β regulating the promoter regions and/or the OAT 
relate to the abnormal development of the kidney, leading 
to kidney deformities. Collectrin is also an important 
target of HNF‑1β‑mediated regulation. This protein is 
also localized to the cilium and involved in maintenance 
of the primary cilium processes that are important to 
cystogenesis. Knockouts of collectrin in mice resulted 
in the phenotype of diabetes, hypertension and renal 
cysts.[54,55] Since HNF‑1β mutant mice are also observed 
to produce renal cysts, its association with regulating 
promoter region of collectrin has shown its role toward 
cystogenesis.[56] Taken together, these observations 
provide convincing evidence that HNF‑1β is at the center 
stage with diverse roles in ciliary functions and plays an 
important role in PKD.
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As a transcription factor, it plays an important role in the 
primary development of various organs, including kidneys 
as one of its major target. In this regard, it has been shown 
that any of the mutant forms of HNF‑1β regulating the 
promoter regions and/or the organic anion transporter 
relate to the abnormal development of the kidney and 
leading to kidney deformities.

Kidney Abnormalities and Cystogenesis Involving 
Hepatocyte Nuclear Factor‑1β

HNF‑1β and its correlated mutations were first described 
in patients with MODY. Screening revealed other 
manifestations, including cystic kidneys, genital 
malformations and kidney dysfunctions among the 
MODY5 patients,[25,57,58]. Some of the mutations in HNF‑1β 
are characterized with nondiabetic renal disease, and 
some show renal cysts as the major diagnosis.[59] Cystic 
diseases commonly surface in the screening of patients 
with diabetes, and many of the unrelated patients 
also carry heterozygous mutations for HNF‑1β; having 
this associated disorder was termed as renal cysts and 
diabetes  (RCAD).[60,61] Screening of patients possibly 
carrying HNF 1β mutations causing renal cyst or nephron 
agenesis, but no diabetes is reportedly a gain of function 
mutation among the patients.[62]

Patients of varying age nowadays are investigated 
for HNF‑1β mutations in order to analyze its wide 
spectrum in disease affliction, and not only limited to 
the kidneys. Prenatal diagnosis of a patient showed to 
develop bilateral hypoplastic kidneys at 3  months of 
age carrying heterozygous mutation (S148L) of HNF‑1β 
gene and a compatible MODY5 phenotype requiring 
insulin, suggestive of nonautoimmune diabetes.[63] A 
17‑week‑old fetus with this mutation lacked normal 
nephronogenesis with renal parenchyma replaced by 
cysts and occasional cystic glomeruli, including primitive 
tubules consistent with cystic renal dysplasia.[59] Another 
novel mutation recently was identified in a 12‑year‑old 
Romanian boy having progressive nondiabetic renal 
dysfunction and bilateral renal cyst formation. With the 
progress of HNF‑1β mutations appearing collectively in 
these patients, new mutations are being categorized. 
A new mutations located at exon 3 (C715G7C p239R), 
was associated with renal insufficiency.[64] A 14‑year‑old 
boy presented nonketotic hyperglycemia, elevated serum 
creatinine levels and deranged liver function with no 
microalbuminuria or proteinuria. He showed mild mental 
retardation with learning difficulties. Ultrasonography of 
the abdomen revealed multiple renal cysts of various sizes 
in both the kidneys. Multiplex ligation‑dependent probe 
amplification for dosage analysis of HNF‑1β gene detected 
a heterozygous whole gene deletion (p.Met1_Trp557del) 

consistent with the diagnosis of RCAD syndrome. This 
is the first case of the RCAD syndrome reported in an 
Indian patient.[65] Many of the patients identified with 
E101X or P159Tdel mutations are also diagnosed with 
hypoplastic glomerulocystic kidney disease, and early 
onset diabetes[59] along with small kidneys with abnormal 
formation of calyces and papillae. MODY patients carrying 
A263insGG or P328L329del mutations often develop 
cystic dysplasia. Mutant carriers having R137‑K161del[25] 
have reduced number of glomeruli and hypertrophy. 
A study of 109 patients for novel UMOD mutation in exon 
8 causing familial juvenile hyperuricemic nephropathy 
and medullary cystic disease revealed six probands having 
HNF‑1β.[66] Many of the patients carry a complete ~1.4 Mb 
deletion at the chromosome 17q12.[67] Having observed 
complete deletion analysis, the screened Japanese patients 
also showed renal hypodysplasia (RHD) and unilateral 
multicystic dysplastic kidney. Deletion of HNF‑1β in 
this part of the gene carries segmental breakpoints and 
microdeletions. Studies on patients carrying gene deletion 
in HNF‑1β showed that majority of patients are found to 
have renal cystic disorders, leading to abnormal formation 
of kidney architecture.

Clinical Manifestations

Patient identified with MODY carrying R177X mutation 
showed additional renal defect.[45] Many other patients 
who were identified with the same malformation carried 
distinct features of diabetic nephropathy leading to 
microvascular complications in kidney and progressive 
increase in microalbuminuria, macroalbuminuria and 
renal failure.[68] Patients having HNF‑1β gene mutations 
develop diabetes at a mean age of 17–25.8  years. 
Others  (12–62.5%) develop genital malformations, 
rheumatic heart disease, pancreas atrophy, hyperuricemia 
and abnormal liver function. Other genital malformations 
such as bicornuate uterus and vaginal aplasia are usually 
seen in women, whereas asthenospermia, bilateral 
epididymal cysts and atresia of vas deferens are seen 
in men. Women with HNF‑1β 17q12 deletion[69] show 
congenital aplasia of the uterus and upper part of the 
vagina.[70‑72] Patients with mutation of HNF‑1β suffer from 
hypomagnesemic disorders where magnesium deficiency 
remains to be one of the most common electrolyte 
disorders. Families with a history of an inherited form 
of hypomagnesemia also show HNF‑1β mutations, 
confirming its role in magnesium homeostasis in the 
distal convoluted tubules (DCTs) that control magnesium 
channel or the transient receptor channel, melastatin 
member 6,[73] including renal magnesium wasting. 
ChIP‑chip data revealed HNF‑1β transcriptional binding 
sites in the FXYD2 gene, which encodes γ‑subunit of the 
Na+/K+‑ATPase. The γ‑subunit is one of the key molecular 
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players in the renal Mg2+ reabsorption in DCT. HNF‑1β 
inconsistency has been identified to cause congenital 
anomalies of the kidneys and urinary tract affecting 
bilateral renal malformations. Many patients identified 
with H69fsdelAC, H324S325fsdelCA, Y352finsA and 
K156E mutations suffered from hypomagnesemia. These 
mutations prevent the binding of HNF‑1β transcription 
activation of ga‑subunit.[74,75]

The mechanisms controlling proliferation, differentiation 
and cell morphology of renal epithelial cells involve 
complex networks of interactive partners and transcription 
factors themselves having cross‑talks on multiple levels. 
Transcription factors not only serve to regulate specific 
genes and cell populations, but their expressions 
coordinate the genetic programs and signaling pathways. 
Deciphering their role as cis‑regulatory elements, they 
serve to create population of different renal cell types 
for normal functional kidney. In recent years, many 
of the transcription factors have been identified, but 
their role still remains elusive. In order to assess the 
functional role of HNF‑1β in kidney development and 
the pathogenesis of the diseased kidneys, screening for 
HNF‑1β mutations is important.

In‑depth analysis of its functional significance as a 
transcription factor in kidney needs further analysis, and 
the possibility of mutated/truncated HNF‑1β in patients 
with renal abnormalities should not be ruled out.
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