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Introduction
Artificial intelligence (AI) is increasingly 
being explored for its potential role in 
modern healthcare. In nephrology, a 
specialty dealing with complex chronic 
conditions and acute emergencies, the 
applicability of AI remains uncertain. 
While it may offer opportunities to 
enhance kidney care, its effectiveness in 
managing intricate clinical, radiological, and 
pathological data is still under investigation. 
By leveraging advanced machine learning 
(ML) algorithms and generative models, 
AI facilitates multidimensional dataset 
analysis, providing insights that surpass 
traditional methodologies. AI applications 
in nephrology are diverse: chronic kidney 
disease (CKD), acute kidney injury (AKI), 
dialysis, kidney transplantation, and 
histopathology.1 Predictive algorithms 
might enable early CKD and AKI detection, 
enhancing preventive strategies.2 In dialysis 
care, researchers have used AI in optimizing 
treatment regimens and monitoring patient 
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Abstract
Artificial intelligence (AI) is a rapidly advancing tool in healthcare, which might have 
significant implications in nephrology. Integrating AI, particularly through models like GPT-
3 and GPT-4, has potential in medical education and diagnostics, achieving accuracy in 
clinical assessments. AI's ability to analyze large, complex datasets from diverse modalities 
(electronic health records, imaging, and genetic data) might enable early detection, 
personalized treatment planning, and clinical decision-making. Key developments include 
AI-driven chronic kidney disease and acute kidney injury predictive models, which utilize 
machine learning algorithms to predict risk factors and disease onset, thereby allowing 
timely intervention. AI is enhancing non-invasive diagnostics like retinal imaging to detect 
kidney disease biomarkers, offering a promising and cost-effective approach to early 
disease detection. Despite these advancements, AI implementation in clinical practice 
faces challenges, including the need for robust data integration, model generalizability 
across diverse patient populations, and ethical and regulatory standards adherence. 
Maintaining transparency, explainability, and patient trust is crucial for AI’s successful 
deployment in nephrology. This article explores AI’s role in kidney care, covering its 
diagnostic applications, outcome prediction, and treatment, with references to recent 
studies that highlight its potential and current limitations.
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adherence, while in transplantation, it has 
been tried to aid graft survival prediction 
and tailoring immunosuppression 
protocols.3 In histopathology, AI-powered 
image analysis systems might increase 
diagnostic accuracy and identify subtle 
patterns in renal biopsies that might 
escape human observation.4 These tools 
are invaluable in resource-constrained 
settings with the unavailability of expert 
pathologists.  By exploring AI’s current 
and potential applications in nephrology, 
this review discusses its role in advancing 
precision medicine and improving patient 
outcomes. The article also emphasizes 
limitations associated with AI's integration 
in nephrology.

Concepts of ML, Deep learning (DL), 
and Natural language processing 
(NLP)
ML is a subset of AI that entails algorithms 
capable of learning from data to make 
predictions or decisions without explicit 
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programming.5 It encompasses various techniques, 
including supervised and unsupervised learning, where 
models are trained on labeled and unlabeled data, 
respectively.6 Additionally, reinforcement learning 
involves learning optimal actions through trial-and-error 
interactions with an environment.7 In nephrology, ML has 
the potential to analyze large volumes of clinical data 
to predict disease progression, identify at-risk patients, 
and recommend personalized treatment plans.8,9 These 
models typically utilize various data types, such as patient 
demographics, laboratory results, and imaging data, to 
generate prediction models.

DL, an ML subfield, utilizes neural networks with numerous 
layers to model intricate data connections.10 It is especially 
adept at processing unstructured data (e.g., medical 
images). DL is inspired by the human brain's structure and 
function, specifically artificial neural networks (ANNs). DL 
models, often with multiple neuron layers, are exceptional 
at extracting features from raw data. Convolutional (CNNs) 
and recurrent neural networks (RNNs) are well-known DL 
architectures, each designed for specific tasks like image 
processing and sequential data modeling, respectively. 
CNNs have been utilized to analyze renal biopsies, identify 
pathological features, and predict patient outcomes based 
on imaging data.11 DL models can also combine multimodal 
data, such as images, genetic data, and clinical information, 
to more comprehensively understand a patient’s condition.

NLP is a crucial AI technology that focuses on the 
interaction between computers and human language.12 It 
employs ML and DL techniques and linguistic knowledge to 
enable machines to comprehend, interpret, and generate 
human language.13-16 ML is the foundation, DL offers 
powerful tools for complex data, and NLP applies these 
tools to the nuanced human language. Refer Figure 1 for 
AI workflow in Nephrology application.

Current Clinical Practice in Nephrology Using AI/
DL
Nephrology education
GPT-4 had shown remarkable potential, outperforming 
USMLE scores typically earned by early-stage medical 
students, with valid insights for  >84% of responses.17 These 
advancements highlight AI's potential to enhance medical 
education and clinical reasoning, with possible applications 
in nephrology. Virtual AI-powered environments can 
provide learning experiences for trainees, simulating 
complex clinical scenarios like AKI or dialysis complications. 
Mixed-reality applications such as the CyranoHealth app 
offer interactive, case-based training tailored to healthcare 
professionals.18,19

Early Diagnosis and Prediction 
AI has shown potential in predicting and managing 
AKI and CKD.20,21 Various ML models predict adverse 
outcomes in hospitalized patients at risk of these diseases, 

Figure 1: AI workflow in nephrology application. BERT: Bidirectional encoder representations from transformers, CNN: 
Convolutional neural network, DL: Deep learning, GPT: Generative pre-trained transformers, ML: Machine learning, NLP: 
Natural language processing, RNN: Recurrent neural network, TF-IDF: Term frequency-inverse document frequency, 
EHR: Electronic health records, AI: Artificial intelligence.
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offering valuable tools for early intervention and resource 
allocation.20-25 During the COVID-19 pandemic, the AKI risk 
in hospitalized patients became a significant concern. To 
address this, Ponce and colleagues developed a prognostic 
score using ML techniques.20 They applied a 10-fold 
cross-validation method to fit models and validated their 
accuracy using the Area Under the Receiver Operating 
Characteristic Curve (AUC ROC). They studied 870 patients 
from the Latin America AKI COVID-19 Registry and 
reported a 0.82 AUC ROC, indicating the model's strong 
predictive ability. Similarly, Vaid and colleagues developed 
several ML models, including logistic regression, Least 
Absolute Shrinkage and Selection Operator (LASSO), 
random forest (RF), and eXtreme Gradient Boosting 
(XGBoost), to predict the dialysis need or death at various 
time points after admission of patients with COVID-19 
and AKI.21 LASSO is a regression technique combining 
variable selection and regularization by shrinking less 
significant feature coefficients to zero, enhancing model 
simplicity and interpretability. RF, an ensemble learning 
method, constructs multiple decision trees (DTs) and 
aggregates their predictions to improve accuracy and 
reduce overfitting, making it effective for classification and 
regression tasks. XGBoost is a highly efficient and powerful 
gradient boosting algorithm that iteratively improves 
model accuracy by optimizing weak learners while handling 
missing data and large datasets with exceptional speed and 
performance.13-15 In their multicenter cohort study involving 
6093 patients, the XGBoost model without imputation 
outperformed other models, achieving a 0.85-0.87 AUC 
ROC and demonstrating AI’s effectiveness in predicting 
critical outcomes in patients with AKI. Another study used 
DL to identify sub-phenotypes of sepsis-associated AKI in 
4001 ICU patients.22 By analyzing 188 variables, including 
vital signs and lab results, they identified three unique AKI 
sub-phenotypes with distinct comorbidities and outcomes. 
These findings highlight AI’s potential in refining AKI 
classification and guiding personalized treatment strategies. 
A systematic review on predicting mortality in patients 
with AKI using AI showed the highest and lowest pooled 
AUC for the broad learning system model, elastic net final, 
and the proposed clinical model, respectively.23 AI can also 
contribute to the early sepsis diagnosis. A meta-analysis 
of seven studies demonstrated a 0.89 (95% CI: 0.86–0.92) 
pooled AUC for ML models predicting sepsis onset 3 to 4 
hours in advance, with a 0.81 (95% CI: 0.80–0.81) sensitivity 
and 0.72 (95% CI: 0.72–0.72) specificity. In comparison, the 
pooled AUROCs for existing sepsis scoring systems, including 
the Modified Early Warning System (MEWS), Systemic 
Inflammatory Response Syndrome (SIRS), and Sequential 
Organ Failure Assessment (SOFA), were 0.70, 0.50, and 
0.78, respectively.24 These findings suggested that ML 
models might outperform traditional sepsis scoring systems 
in predicting sepsis. AI’s application in sepsis prediction is 
still being researched, and the best model type is yet to be 
formulated. AI has also been applied to CKD management, 

with several studies backing its potential to enhance 
early detection and prognosis. For instance, Debal et al., 
explored the capability of different models to predict CKD 
stages using binary and multi-category approaches.25 They 
tested three models: RF, Support Vector Machine (SVM), 
and DT. SVM is a supervised ML algorithm that identifies 
an optimal hyperplane to separate data into distinct 
classes, maximizing the margin for effective classification 
or regression. DT is a tree-structured algorithm that splits 
data into branches based on feature values, creating a 
decision hierarchy to classify data or predict outcomes in 
an interpretable manner.5-9 To choose the most important 
features for these models, they used methods like analysis 
of variance and recursive feature elimination, combined 
with cross-validation to improve accuracy. After testing 
these models with tenfold cross-validation, they found 
he RF model to outperform SVM and DT, especially when 
using recursive feature elimination.  Tangri and colleagues 
developed models and equations to predict kidney failure 
risk by integrating extensive datasets.26 The meta-analysis 
included data from 31 cohorts, comprising 721,357 
participants with CKD stages 3 to 5 spanning four continents. 
Using risk factors from the original risk equations, new 
pooled kidney failure risk equations were developed by 
calculating and combining cohort-specific hazard ratios. The 
original equations demonstrated excellent discrimination, 
effectively distinguishing individuals who developed kidney 
failure with consistent performance across subgroups by 
age, race, and diabetes status. Another study showed that 
an automated, laboratory-based clinical decision support 
system could enhance physician compliance with guidelines 
for timely CKD monitoring.27 An e-technology-based 
program was designed to identify patients at CKD risk and 
automatically order relevant screening tests.28

AI and Creatinine Clearance
In critically ill patients, creatinine clearance (CrCl) is a key 
glomerular filtration rate indicator and can fluctuate daily. 
Huang et al. developed and validated predictive models 
using a gradient-boosting ML algorithm to forecast CrCl 
one day in advance, leveraging data from 2,825 patients 
in the EPaNIC multicenter database.29 Three models were 
created: the "Core" model, incorporating demographic, 
admission diagnosis, and daily lab results; the "Core + 
BGA" model, adding blood gas analysis (BGA) data; and 
the "Core + BGA + Monitoring" model including high-
resolution monitoring data. Model performance was 
evaluated against the actual CrCl by mean absolute error 
and root-mean-square error. All models demonstrated 
higher accuracy and lower prediction errors. Prediction 
models utilizing routinely collected ICU clinical data 
accurately predicted next-day CrCL. These models might 
have applications in adjusting drug dosages and identifying 
at-risk patients.
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Dialysis
Dialysis is characterized by its structured and routine 
nature and produces lots of patient-specific data, 
including dialysis prescriptions (e.g., treatment duration, 
ultrafiltration volumes, and flow rates) and intradialytic 
biosignals (e.g., blood pressure, heart rate). These datasets, 
often stored in electronic health records (EHR), are ripe for 
AI/ML analysis, offering enhanced diagnosis, prognosis, 
and treatment recommendations. Chan et al. employed 
NLP to extract symptoms from EHRs, achieving higher 
sensitivity in identifying hemodialysis-related symptoms 
than traditional coding methods.30 Zhang et al. utilized 
AI/ML-driven image analysis to classify vascular access 
aneurysms with impressive accuracy, demonstrating AI’s 
potential in image-based diagnostics.31 Prognostically, Lee 
et al. developed an RNN model for predicting intradialytic 
hypotension with high accuracy, showcasing AI's capacity 
to foresee critical events during dialysis sessions.32 
Accurate dry weight estimation is challenging but essential 
to reduce morbidity and mortality. Some studies on neural 
network development showed using bio-impedancemetry, 
blood volume monitoring, and blood pressure as inputs 
to predict AI-based dry weight showed that the neural 
network's predictions outperformed those of experienced 
nephrologists in most cases, highlighting its potential.33,34

Despite these promising developments, routine AI/ML 
implementation in dialysis remains limited, with only a few 
such as ML-driven anemia management models, reaching 
clinical practice.35

Vascular access management
AI is now being utilized in vascular access (VA) management 
through applications in preoperative planning, monitoring, 
and predictive modeling. The Vexev Ultrasound Imaging 
System exemplifies advancements in preoperative mapping 
by employing robotic tomographic ultrasound to provide 
comprehensive 3-D vascular data comparable to CT or 
MRI scans without radiation or nephrotoxic contrast 
agents risks. This hands-free system integrates cloud-
based platforms like vxView for remote expert stenosis, 
aneurysms, and thrombosis analysis.36 ML can also aid 
surgical planning, as shown by Doneda et al., whose models 
achieved 96.8% accuracy in predicting arteriovenous fistula 
(AVF) maturation and postoperative blood flow velocities, 
optimizing resource utilization, and reducing failure rates.37 
In monitoring and risk prediction, AI-powered tools like 
DeepVAQ use photoplethysmography (PPG) sensors and 
DL to assess VA quality with over 92% accuracy, aiding 
early complication detection.38 Mel spectrogram analysis, 
as utilized by Chung et al., transforms audio data into 
visual formats for DL models, successfully predicting AVF 
stenosis and malfunction with high accuracy.39 Risk models 
like PREDICT-AVF and AVF-FM incorporate patient-specific 
data to forecast complications such as thrombosis and 
recurrent interventions. The PREDICT-AVF web application, 

developed using prospective cohort data, achieved a 0.75 
AUROC for one-year intervention prediction.40

Peritoneal dialysis
AI has now been integrated into the PD care. One example 
is a chatbot system designed to support PD patients. 
This system, offers a range of functionalities, including 
instructional videos, clinical reminders, dietary guidelines, 
and automatic PD guidance.41 For clinical predictions, 
Noh et al. utilized ML algorithms to assess mortality risk 
among 1,730 PD patients, finding that survival-tree models 
outperformed traditional methods like Cox regression, 
with a 0.769 concordance index compared to 0.745.42 
Additionally, AI has been applied to predict and manage 
peritonitis. Zhang et al. used a systematic ML approach 
to analyze immune responses to microbiologically well-
defined infections in 83 PD patients presenting with acute 
peritonitis.43 Many biomarkers were used to characterize 
pathogen-specific local immune responses to genera such 
as Streptococcus and coagulase-negative Staphylococcus 
showing value of nonlinear approaches for analyzing 
complex biomedical datasets where traditional statistical 
methods fall short and single biomarkers lack sensitivity 
and specificity. The nature of the immune signatures 
varied depending on the mathematical model applied. By 
directly comparing three ML approaches—RF, SVMx, and 
ANNs—the study identified RF as the most effective model 
for microbiological and clinical outcome prediction.

Personalized Medicine
The idea "one therapy fits all" is outdated. Precision 
medicine focuses on optimizing treatment outcomes 
and minimizing adverse effects for each patient. AI has 
propelled personalized medicine development. Destere 
et al. demonstrated a forward-backwards ML approach 
to optimize the early rituximab regimen intensification 
in patients with membranous nephropathy with high 
underdosing risk.44 This method identified the best 
combination of variables to predict rituximab underdosing 
using training data and validated these predictions on 
a test set. CURATE.AI predicts optimal dosages and 
treatment outcomes based on individual patient data. It 
continuously adjusts patient profiles as the disease status 
changes, optimizing dosages for single drugs and drug 
combinations.45 IBM Watson for renal oncology uses AI to 
predict personalized treatment plans and responses.46

Kidney imaging
Radiomics involves mathematically extracting quantitative 
features from medical images.47 Recent studies use AI, 
including radiomics-based ML and DL, to derive obscure 
diagnostic insights through visual inspection of digital 
images.48-50 Total kidney volume (TKV) is a crucial imaging 
marker evaluating Autosomal Dominant Polycystic Kidney 
Disease (ADPKD) severity and progression. DL networks 
distinguish renal parenchyma from pathological cysts 
without manual tracking, estimating TKV as effectively as 
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automated kidney segmentation. Recent studies apply DL 
algorithms in ultrasound, CT, and MRI to compute TKV in 
ADPKD patients, matching manual method accuracy.49-51 
Goel et al. created a CNN model using 3D-US images to 
segment PKD regions for TKV computation, achieving a 
0.80 Dice score in the test set.50 (The Dice coefficient is a 
statistical similarity measure, commonly used to evaluate 
the overlap between two sets or binary classifications). 
Li et al. conducted a radiomics analysis using diffusion-
weighted imaging from fMRI data. The authors developed 
a logistic regression model to differentiate between 
individuals with CKD and healthy subjects, achieving 93% 
sensitivity and 70% specificity.52

Kidney Transplantation 
AI’s application has been researched for pre-transplant 
evaluation, organ allocation systems, and long-term post-
transplant care. Kidney Donor Risk Index, Kidney Donor 
Profile Index (KDPI), and Estimated Post-Transplant Survival 
Score tools have enhanced organ allocation by combining 
donor-recipient data to predict graft survival and optimize 
matches. Bae et al. reported challenges like unchanged 
discard rates post-KDPI implementation, but newer AI-
driven models like neural networks have demonstrated 
superior predictive accuracy in post-transplant outcomes, 
including graft survival and delayed graft function 
(DGF).53 For instance, Kawakita et al. highlighted ML 
model’s advanced performance in predicting DGF, which 
can improve decision-making and resource allocation.54 
Advanced DL systems, such as those developed by Marsh 
et al., have reduced unnecessary organ discards by 
enhancing pre-operative graft biopsy analysis.55 AI has also 
been used for waitlist management, patient education, 
and post-transplant monitoring. Tools like ML-based 
waitlist prediction models and risk stratification algorithms, 
as described by Pineda et al., might help refinine patient 
care strategies.56 Pineda et al.56 identified gene signatures 
associated with rejection utilizing the ML model. In post-
transplant settings, AI helped predict complications like 
pneumonia and cytomegalovirus infection, as shown 
by Luo et al. and Sheppard et al., respectively.57,58 AI-
powered surgical systems can also enhance precision 
through augmented reality and robotic assistance, while 
personalized immunosuppressive protocols optimize 
Tacrolimus and Mycophenolate Mofetil (MMF) dosing, 
demonstrated in studies leveraging genetic polymorphisms 
and neural networks.59 As the field advances, AI integration 
with regenerative medicine and machine perfusion may 
redefine KT processes, ensuring equitable organ allocation 
and improving global transplant success rates.

Kidney histopathology
Kidney biopsy pathology is the gold standard in 
diagnosing kidney parenchymal diseases. However, more 
standardization in the diagnostic approach is needed. 
Variability in specimen preparation and pathological 
examination among observers pose challenges for 

reproducibility, affecting diagnosis accuracy. AI has seen 
notable advancements in this field. Whole-slide images 
(WSIs) are produced through high-throughput slide 
digitization, enabling efficient utilization of computer-
assisted histopathological analysis.60 Pathology image 
segmentation with DL involves data preparation, image 
preprocessing (including normalization and augmentation), 
model selection and construction (software choice, 
model training), post-processing techniques application, 
feature extraction, and correlating these features with 
diseases.60-64 Recently, DL algorithms have shown promise 
in pathology image analysis, including tumor region 
identification and metastasis detection.61 Jayapandian et 
al. developed a DL method for segmenting renal cortex 
tissue structures across various stains (HE, PAS, silver, 
trichrome). They indicated PAS-stained whole slide images 
(WSIs) as optimal for achieving consistent segmentation of 
diverse structures, including glomerular tufts, Bowman’s 
capsules, tubules, peritubular capillaries, arteries, and 
arterioles.4 Zeng et al. developed DLV algorithms to detect 
glomerular lesions and classify and quantify various 
intrinsic glomerular cell types. Additionally, they devised 
a network-driven mesangial hypercellularity score using 
PAS-stained slides in 400 Chinese patients diagnosed 
with immunoglobulin A nephropathy (IgAN).62 Weis et 
al. showed that DL algorithms, particularly CNN, can 
accurately identify subtle and overlapping glomerular 
morphological changes from conventional microscopy. 
By categorizing nine glomerular alteration classes and 
training CNNs on datasets curated by nephropathology 
experts (23,395 images), the models achieved excellent 
classification performance.63

Clinical trials
AI is increasingly integrating into research and 
development, fueled by advancements in computational 
technology. Its utility includes analyzing biometric 
data, imaging, and facilitating trial design, recruitment, 
retention, and outcome analysis.64,65 AI-powered tools 
can streamline protocol drafting using large language 
models (LLMs) like retrieval-augmented generation (RAG). 
These tools integrate external knowledge sources, such 
as KDIGO guidelines, to generate contextually relevant 
trial documents. However, human oversight remains 
essential to ensure logical accuracy and precision. AI can 
potentially enhance patient recruitment by analyzing 
EHRs and leveraging tools like Criteria2Query for clinical 
trial eligibility query generation.66 ML models can further 
optimize recruitment by managing missing data and 
identifying high-risk patients, especially in trials on 
progressive kidney diseases. In pretrial stages, digital 
twins, such as TWIN-GPT, can enable virtual simulations 
of patient trajectories.67 This approach can help in 
predicting outcomes and adverse events, advancing 
drug development and hypothesis testing without direct 
patient involvement. During the consent process, AI-
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driven chatbots can be used to simplify documentation 
and improve patient comprehension, though concerns 
about dehumanization persist. Additionally, real-time AI-

driven data analysis can enable dynamic trial adjustments, 
ensuring timely outcomes. Table 1 and Figure 2 show the 
overview of AI applications in Nephrology.

Table 1: Overview of applications of AI in Nephrology
Area Applications AI Techniques Benefits References
Nephrology 
education

Simulated training for nephrology trainees  
using AI-powered environments.
Enhancing clinical reasoning through virtual 
scenarios (e.g., AKI or dialysis complications).

Natural Language 
Processing (NLP), 
Mixed Reality 
Platforms.

Improves understanding of 
complex cases.
Bridges knowledge gaps in 
nephrology trainees.
Cost-effective training without 
patient risk.

18,19

Early diagnosis  
& prediction

Predicting CKD and AKI risk in hospitalized patients.
AI-driven prognostic scores for AKI outcomes.
Aki subphenotyping of AKI and sepsis-related 
kidney injury for personalized treatments.

ML, Gradient 
Boosting Models, 
Support Vector 
Machines (SVMs), 
Deep Learning (DL).

Enables early intervention.
Enhances resource allocation.
Reduces disease burden 
through timely treatment.

20-21

Dialysis Monitoring intradialytic parameters (e.g., blood 
pressure, heart rate, laboratory parameters).
Predicting intradialytic complications like 
hypotension.
Estimating optimal dry weight using neural 
networks.
AI-based anemia management models for 
personalized care.

RNN, Neural 
Networks, Image 
Analysis, NLP.

Reduces dialysis-associated 
complications.
Improves treatment precision 
and patient outcomes.
Provides actionable insights 
from biosignal data.

30-33

Kidney 
transplantation

Predicting graft survival and delayed graft function.
AI-enhanced organ allocation through tools  
like KDPI.
AI for patient education and personalized 
immunosuppression protocols.
Post-transplant monitoring for infections and 
complications.

Neural Networks, 
ML, DL, Augmented 
Reality Systems.

Increases transplant success 
rates.
Improves organ allocation 
accuracy.
Enhances patient follow-up and 
reduces rejection risks.

53-59

Histopathology Automating renal biopsy analysis.
Identifying glomerular lesions and cell types 
Detecting morphological changes in glomeruli  
for disease categorization.

DL (e.g., CNN),  
Whole Slide Image 
(WSI) Analysis.

Reduces pathologist workload 
in resource-constrained 
settings.
Enhances diagnostic  
accuracy and reproducibility.
Identifies subtle morphological 
changes missed in manual 
evaluations.

60-63

Vascular access 
management

Preoperative mapping for vascular access using 
Robotic Tomographic Ultrasound.
Predicting vascular access complications like  
stenosis or thrombosis.
Real-time monitoring of vascular access quality.

PPG, ML, DL. Reduces vascular access failure 
rates.
Enhances long-term viability of 
AVF.
Supports early detection of 
complications.

36-40

Peritoneal 
dialysis

Developing chatbots for PD patient support (dietary 
guidelines, clinical reminders).
Predicting peritonitis risk using immune response 
profiling.
Mortality risk assessment for PD patients.

Chatbots, RF, SVM, 
ANN.

Supports patient self-
management.
Identifies and mitigates 
complications early.

41-43

Imaging Automated segmentation of kidneys and cysts  
in cystic kidney diseases.
Radiomics-based analysis for CKD diagnosis.
Calculating TKV in PKD patients.

Radiomics, DL, 
CNNs.

Improves imaging accuracy.
Offers non-invasive, quantitative 
analysis of kidney diseases.
Enhances disease monitoring 
and progression tracking.

47-52

Contd.,
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Challenges in Implementing AI in Precision 
Medicine
Implementing AI in nephrology encounters hurdles such as 
regulatory barriers, data biases, and the requirement for 
large, high-quality datasets. Challenges include integrating 
data from diverse sources, ensuring model applicability 
across different patient groups, and addressing ethical 
concerns in clinical settings.68 Concerns about human 
oversight to prevent errors, maintain patient trust, and 
ensure legal accountability for AI-driven decisions also 
persist.69

Explainability and Interpretability in Clinical AI - As ML 
algorithms play an increasing role in analysis and diagnosis, 
it's critical to understand how they analyze and interpret 
data to ensure valid conclusions. Interpretability focuses 
on grasping the model's overall behavior and cause-effect 
relationships, identifying issues, and predicting input and 
parameter change outcomes. Furthermore, the General 

Data Protection Regulation (GDPR), a European legislative 
framework, sets forth legal requirements for handling 
health data, including its acquisition, storage, transfer, 
processing, and analysis.70 There is an ongoing need for 
transparency in the decision-making processes of AI, 
algorithms interpretability, and ethical implications of 
integrating these automated systems into clinical settings.71 
Adopting best AI model deployments is essential for 
assessing their impact in healthcare settings. This includes 
establishing a learning health system, standardizing 
EHRs, and ensuring precise data curation. Ensuring legal 
compliance and data privacy, maintaining high-quality 
data, and overcoming technical and resource challenges 
are imperative for successful integration.

Addressing Bias in AI Models 
Bias in AI can severely affect the accuracy and fairness of 
clinical decisions.70,72,73 Types of bias include:
• Selection Bias: When training data does not represent 

the general patient population.

Personalized 
Medicine

Optimizing drug dosages for specific patients (e.g., 
Rituximab dosing in membranous nephropathy).
CURATE.AI for real-time therapy adjustments  
based on patient data.
Predicting treatment responses in renal oncology.

ML, CURATE.
AI, Genetic Data 
Integration.

Reduces adverse drug reactions.
Tailors treatment to individual 
patient needs.

44-46

Clinical trials AI-aided patient recruitment and retention.
Developing virtual patient twins for pre-trial 
simulations.
Real-time trial adjustments using AI-driven 
analytics.

LLMs, RAG, Digital 
Twins.

Accelerates drug development.
Enhances trial inclusivity. 
Improves the reliability of trial 
outcomes through dynamic 
data analysis.

64-67

AKI: Acute kidney injury, CKD: Chronic kidney disease, ML: Machine learning, RNN: Recurrent neural networks, KDPI: Kidney donor profile 
index, PPG: Photoplethysmography, DL: Deep learning, AVF: Arterio venus fistula, RF: Random forest, SVM: Support vector machines, ANN: 
Artificial neural networks, PD: Peritoneal dialysis, TKV: Total kidney volume, LLM: Large language models, RAG: Retrieval-augmented generation

Figure 2: Application of AI in Nephrology. AI: Artificial intelligence.

Table 1: Continued
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• Measurement Bias: Due to inconsistencies in data 
collection methods across facilities.

• Algorithmic Bias: When the training data or algorithm 
processing introduces bias.

• Confirmation Bias: When data confirming pre-existing 
beliefs is prioritized.

• Cultural Bias: When models do not account for cultural 
differences.

Diversifying data collection, standardizing measurements, 
using bias detection and mitigation tools, and continuously 
monitoring model performance can help tackle data 
bias. Effective AI implementation includes continuous 
learning from new data, active bias evaluation, model 
interpretability and explainability workflows, clinician input 
feedback loops, and fostering multidisciplinary collaboration 
to ensure clinical relevance and technical reliability.

AI’s integration in nephrology stands to transform the 
field by boosting diagnostic precision, enabling tailored 
treatment plans, and optimizing clinical workflows. With 
the capacity to analyze complex datasets—such as EHRS, 
imaging, and genetic information—AI might empower 
earlier detection and kidney disease intervention, leading 
to better patient outcomes. Ensuring patient trust through 
transparency, explainability, and ethical AI practices 
remains essential. As AI technologies continue to evolve, 
robust clinical validation and interdisciplinary collaboration 
will play pivotal roles in unlocking its full potential in 
nephrology. Addressing existing challenges and creating a 
supportive regulatory framework will be key to establishing 
AI as a more efficient, equitable, and advanced healthcare 
system cornerstone.

Conflicts of interest: There are no conflicts of interest.
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