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Introduction
In recent years, there has been a rise seen 
in chronic kidney disease  (CKD), and it has 
been estimated that by 2040, it will be 
the fifth common cause of death globally. 
In 2020, there were 697.5 million cases 
of CKD worldwide with a prevalence rate 
of 9.1%.[1] The global all age prevalence 
increased to 29.3% during 1990–2017 
with stable age‑standardized prevalence, 
and 1.2 million deaths occurred due to 
CKD in 2017. Therefore, it is essential to 
enhance awareness about the importance 
of preventive measures among population, 
professionals, and policymakers.[2] The CKD 
is commonly connected with diabetes, 
hypertension, obesity, hyperlipidemia, and 
nonalcoholic fatty liver disease.[3,4] These 
factors not only act as initiators, but also 
promoters for kidney disease.[5] Exposure to 
various toxins as a result of either pollution 
or industrial disasters is also discussed as a 
cause for multi‑organ pathology including 
kidneys. Several studies after the infamous 
1984 Bhopal gas tragedy also highlighted 
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the need for continuous observations 
for the assessment of long‑term effects 
in all important organ systems of toxic 
gas‑exposed individuals.[6‑9]

In addition to the elementary diagnostic 
parameters to detect CKD, an exploration 
of the role of epigenetic mechanisms 
for their translational efficacy as novel 
therapy for CKD is also advocated.[10] Post 
disaster, though the Indian Council of 
Medical Research  (ICMR) made attempts 
to assess severe effects of toxic gas on the 
exposed population,[11] no studies were 
undertaken on the cytogenetic damage 
of toxic gas‑exposed population having 
CKD. Therefore, this is the first attempt 
to evaluate cytogenetic damage through 
chromosomal aberration  (CA) analysis 
and micronuclei  (MN) assay among CKD 
patients and survivors exposed to toxic gas.

Materials and Methods
This cross‑sectional study was designed 
as a multi‑group study to assess the 
independent role of CKD as well as 
toxic gas exposure on cytogenetic 
alterations. The study was approved by 
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the Institutional Ethics Committee  (IEC) of ICMR‑National 
Institute for Research in Environmental Health Bhopal, and 
written informed consent was taken from each participant 
before initiating the study. Considering sister chromatid 
exchange  (SCE) and MN frequencies in control and CKD 
patients, at 0.05 level of significance and 80% power, 
the sample size was calculated as 175 subjects in each 
of the four groups that included those exposed to gas 
and having CKD  (Group  I), those not exposed to gas but 
having CKD (Group II), those exposed to gas and free from 
CKD (Group III), and those not exposed to gas and also free 
from CKD (Group  IV). Excluding pregnant/lactating females 
and those with congenital anomalies and malignancies, 
all other diagnosed cases of CKD including those with 
hypertension and diabetes, aged 30  years or more, and 
reporting at the government and or private tertiary care 
centers during the study period were included.

All the participants possessing the ICMR registration card 
issued for the purpose of long‑term surveillance studies 
were considered as gas‑exposed participants, while those 
not possessing that card were considered as nonexposed. 
Thus, a total of 608 participants were recruited, which 
comprised 167 in Group I, 116 in Group II, 162 in Group III, 
and 163 in Group  IV. However, due to failure of culture in 
26 participants, the final analysis included 582 participants, 
which included 160 in Group  I, 106 in Group  II, and 158 
each in groups III and IV.

The standard methods were adopted for preparation of 
CA analysis and MN assay.[12‑14] For cytogenetic study, 
3  ml peripheral blood sample was collected in sterile 
sodium heparin vacutainer by venipuncture. Peripheral 
blood (0.5 ml) was added to 4 ml Rosewell Park Memorial 
Institute  (RPMI) 1640 medium supplemented with 20% 
fetal bovine serum and phytohemagglutinin  (PHA) and 
maintained at 37°C for 72  h. For each individual, the 
cultures were set up in duplicates and in two separate sets. 
One set was used for chromosomal analysis, while another 
set was used for MN assay. The values for cytogenetic 
parameters, such as the frequency of MN, nuclear division 
index  (NDI), mitotic index  (MI), frequency of dicentrics, 
rings, chromatid breaks, and fragments, were recorded.

The severity of CKD was classified on the basis of 
estimated glomerular filtration rate  (eGFR). The statistical 
analysis was done using the statistical software Statistical 
Package for the Social Sciences  (SPSS) 25.0. The 
frequencies of cytogenetic parameters were expressed 
as mean and standard error. For the purpose of analysis, 
the study variables were arbitrarily dichotomized, that is, 
age  (<45 and  ≥45), gender, history of exposure present or 
absent, and CKD present or absent, while the outcome 
variables were cytogenetic parameters. The mean of 
cytogenetic parameters according to study variables was 
compared using Student’s t‑test. Group‑wise comparison 
of cytogenetic parameters was done by one‑way analysis 

of variance  (ANOVA) followed by post hoc least significant 
difference (LSD). The significance level was set at P < 0.05.

Results
The present study included 365  male  (168 with CKD and 
197 without CKD) and 217  female  (98 with CKD and 119 
without CKD) participants. Table 1 shows the mean values 
for cytogenetic parameters according to study variables. It 
can be observed that those aged  ≥45  years were having 
significantly higher mean of MN, chromatid breaks, and 
fragments and significantly lower mean MI than those 
aged  <45  years. According to gender, females had higher 
mean MI, chromatid breaks, and fragments compared to 
males. Further, those exposed to toxic gas and those having 
CKD had higher mean values of MN, NDI, dicentrics, rings, 
chromatid breaks, and fragments compared to those not 
exposed to toxic gas and those free from CKD, respectively.

Table  2 shows the distribution of cytogenetic parameters 
according to different groups. The one‑way ANOVA showed 
that there was a declining trend in the mean values for all 
cytogenetic parameters according to the group. The post 
hoc test revealed that there was a significant increase in 
frequencies of MN and NDI values in Group  I, Group  II, 
and Group III compared to Group IV. However, the increase 
was less in females of Group  I and Group  II. No significant 
difference was observed in males and females of Group  III 
compared to those in Group  IV, but significant increase 
was noted in total subjects  (male and female combined) 
in Group  III. When non‑exposed CKD group  (Group  II) and 
exposed CKD group  (Group  I) were compared, there was 
no significant difference in the values of MN frequency 
and NDI. However, the values of MN frequencies and NDI 
were significantly higher in exposed CKD groups  (Group  I) 
compared to exposed non‑CKD  (Group  III) group. But no 
significant difference in the values of NDI was observed 
in females of exposed CKD group  (Group  I) compared to 
exposed non‑CKD group (Group III).

Further, significant changes (P < 0.0001) in the values of MI 
in Group I, Group II, and Group III were observed compared 
to Group  IV. Similarly, significant  (P < 0.005) difference was 
also noticed for the values of MI in females of Group  I, 
Group II, and Group III compared to females of Group IV.

The frequency of dicentrics showed a highly significant 
difference  (P  <  0.0001) in Group  I, Group  II, and Group  III 
compared to Group IV. Further, highly significant (P < 0.005) 
difference was also noticed for the values of dicentric 
frequencies in males of Group  I and Group  II compared to 
Group  IV males. Though a significant  (P  <  0.05) difference 
was noticed for values of dicentric frequencies in females 
of Group  I and Group  II compared to Group  IV females, 
no such significant difference was observed in Group  III 
compared to Group IV.

Further, a significant difference  (P  <  0.05) was 
observed in the frequencies of rings in males and 
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females of Group  I compared to males and females, 
respectively, of Group  IV, and the difference was more 
pronounced  (P  <  0.005) when total subjects of Group  I 
were compared with the total subjects of Group  IV. 
However, there was no significant difference observed for 
values of frequencies of rings in Group  II and Group  III 
compared to Group IV.

Similarly, though the frequencies of chromatid breaks 
and fragments showed a significant increase  (P  <  0.0001) 
in Group  I and Group  II compared to Group  IV, no such 
significant difference was observed in Group  III compared 
to Group IV. No significant difference was observed for the 
values of MI, dicentrics, and rings of Group  I compared to 
Group  II. However, a highly significant  (P < 0.005) increase 
was observed for the frequencies of chromatid breaks and 
fragments in Group  I compared to Group  II. On comparing 
Group  I and Group  III, no significant difference was noted 
for MI and rings, but a significant increase was observed 
for the frequencies of dicentrics (P < 0.005) and chromatid 
breaks and fragments (P < 0.0001).

Table  3 shows the cytogenetic parameters according to 
the severity of the CKD. It can be seen that a significant 
increasing trend was found for MN, chromatid breaks, 

and fragments. The post hoc analysis suggested that 
those having eGFR  <15 had significantly higher mean MN 
compared to those having eGFR 15–29  (P  =  0.02) and 
those having eGFR 60–89  (P  =  0.22). Similarly, post hoc 
analysis of chromatids break showed that those having 
eGFR  <15 had significantly higher chromatid breaks 
compared to those having eGFR 30–44  (P  =  0.014) and 
those having eGFR 45–59 (P = 0.047). The post hoc analysis 
of fragments also showed that those having eGFR  <15 
had significantly higher fragments compared to those 
having eGFR 30–44 (P = 0.018) and those having eGFR 45–
59  (P  =  0.041). Though an increasing trend was observed 
for other parameters, it was statistically non‑significant.

Discussion

In the present study, no significant difference was observed 
in the cytogenetic end points between exposed CKD and 
non‑exposed CKD patients. A significant difference was noted 
between exposed CKD and exposed non‑CKD patients in terms 
of MN frequency, NDI, chromatid breaks, and fragments, 
suggesting that the cytogenetic alterations could be due to 
the disease itself. Several earlier studies have also shown that 
CKD patients had higher levels of genetic damage.[15‑19]

Table 2: Group‑wise comparison of cytogenetic parameters
Groups n MN NDI MI Dicentrics Rings Chromatid breaks Fragments
Group I 160 6.83±0.26*# 2.78±0.08*# 4.87±0.11# 0.18±0.03*# 0.08±0.02*# 2.59±0.13%*# 3.58±0.14%*#

Group II 106 6.47±0.34*# 2.71±0.11*#@ 4.74±0.13# 0.20±0.04*# 0.04±0.02 1.87±0.17@*# 2.83±0.18@*#

Group III 158 1.83±0.08@%# 2.09±0.08@%# 4.97±0.10@# 0.07±0.02@% 0.04±0.02@ 0.43±0.05@% 0.83±0.06@%

Group IV 158 0.97±0.07@%* 1.73±0.09@%* 5.72±0.11@%* 0.04±0.02@% 0.01±0.006@ 0.30±0.05@% 0.59±0.06@%

F, P 241.11, 0.000 33.7, 0.000 15.90, 0.000 8.48, 0.000 3.91, 0.009 123.67, 0.000 188.53, 0.000
CKD=chronic kidney disease, MI=mitotic index, MN=micronuclei, NDI=nuclear division index. *Significant when compared with Group 3. @

Significant when compared with Group 1. #Significant when compared with Group 4. %Significant when compared with Group 2

Table 1: Distribution of cytogenetic parameters according to the study variables
Characteristics n MN NDI MI Dicentrics Rings Chromatid breaks Fragments
Age

<45 years 221 3.28±0.23 2.27±0.08 5.28±0.09 0.09±0.02 0.04±0.01 0.95  0.09 1.50±0.12
≥45 years 361 4.15±0.19 2.31±0.06 4.99±0.07 0.13±0.02 0.04±0.01 1.43±0.09 2.12±0.09
F, P 8.28, 0.004* 0.18, 0.669 5.81, 0.016* 1.94, 0.164 0.22, 0.639 12.69, 0.000* 15.51, 0.000*

Gender
Male 365 3.68±0.18 2.29±0.06 4.99±0.08 0.10±0.02 0.04±0.01 1.12  0.08 1.77±0.09
Female 217 4.05±0.26 2.31±0.07 5.29±0.09 0.13±0.02 0.14±0.02 1.47±0.12 2.08±0.14
F, P 1.44, 0.231 0.07, 0.792 6.60, 0.01* 1.80, 0.18 0.002, 0.961 6.79, 0.009* 3.96, 0.047*

Exposure
Absent 264 3.18±0.22 2.12±0.07 5.33±0.09 0.10±0.02 0.02±0.008 0.93  0.09 1.49±0.10
Present 318 4.35±0.19 2.44±0.06 4.92±0.08 0.13±0.02 0.06±0.01 1.52±0.09 2.21±0.19
F, P 15.87, 0.000* 11.28, 0.001* 12.54, 0.000* 0.73, 0.394 6.19, 0.013* 20.22, 0.000* 22.38, 0.000*

CKD
Absent 316 1.40±0.06 1.91±0.06 5.34±0.08 0.05±0.01 0.02±0.008 0.37  0.03 0.71±0.04
Present 266 6.69±0.21 2.75±0.07 4.82±0.08 0.19±0.03 0.06±0.02 2.30±0.11 3.28±0.11
F, P 699.7, 0.000* 90.3, 0.000* 21.49, 0.000* 24.59, 0.000* 6.53, 0.011* 336.74.22, 0.000* 524.26, 0.000*

CKD=chronic kidney disease, MI=mitotic index, MN=micronuclei, NDI=nuclear division index
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Overproduction of reactive oxygen species in CKD patients 
may lead to DNA damage. The imbalance between 
antioxidant defense mechanisms and excess production of 
oxidants is obviously augmented in CKD.[20] The conditions 
of hypertension and dyslipidemia are also augmented 
by CKD that, in turn, encourages progression of kidney 
failure.[21] It has been noted that epigenetic alterations are 
linked with inflammation and cardiovascular ailment in 
CKD patients.[22] The increased angiotensin II levels found 
in CKD patients that enhance premature aging might 
directly impact the pathophysiology and therapeutics in 
CKD.[19] It has been noted that a variety of factors prejudice 
the formation of MN in cells of CKD, like age, sex, genetic 
makeup, physical and chemical agents, as well as habitual 
practice of chewing and/or smoking of tobacco and 
drinking of alcohol.[23] The conventional and molecular 
cytogenetic findings are too important in management of 
CKD, possibly for reducing genomic instability.[24]

It was observed that advanced CKD patients showed 
more DNA damage, and such damage was increased after 
hemodialysis in type  2 diabetes mellitus.[25,26] An exposure 
of metals in CKD patients can lead to reduction in kidney 
functions.[27] Thus, the confounders can be lifestyle, living 
environment, nutritional factors, drinking water, and 
occupational exposure to other toxicants.[28] Ipek et  al.[29] 
had opined that alterations in NDI value are directly related 
to the proliferative ability of the cell. The urinary cell‑free 
mitochondrial DNA and nuclear DNA could be employed 
as prognostic biomarkers for kidney outcome in CKD.[30] 
Coimbra et al.[31] have made a recent observation that CKD 
patients have increased levels of circulating cell‑free DNA 
as well as different types of DNA damage.

The exposed non‑CKD group when compared to non‑exposed 
non‑CKD group showed significant cytogenetic damage in 
terms of MN frequency and NDI. In chromosomal assay, MI 
showed significant decrease, but no significant difference 
was observed for dicentrics, rings, chromatid breaks, and 
fragments. Higher chromosomal damage was reported in 
toxic gas‑exposed women.[32] The types of abnormalities 
recorded were chromosome breaks, gaps, dicentrics, 
rings, and triradial and quadriradial configurations. Malla 

et  al.[6] observed that the mean percentage of acrocentric 
associations in the toxic gas‑exposed population was 
significantly higher compared to controls. The persistence 
of genomic instability in terms of higher CAs and atypical 
lymphocytes was also noticed in toxic gas‑exposed 
population of Bhopal.[33,34] A pilot follow‑up study conducted 
after 30  years of the tragedy reported stable or clonal 
rearrangements even after 30  years in increased SCE 
and decreased replicative index seen immediately after 
toxic gas exposure.[35] It also demonstrated a correlation 
between age, exposure status, and cytogenetic alterations 
in toxic gas‑exposed individuals. However, the cytogenetic 
alterations observed may not be solely attributed to toxic 
gas exposure because the effects of confounding variables 
too contribute to the genetic damage.

Thus, to conclude, the cytogenetic changes reported here 
are similar to earlier studies, which can be partly attributed 
to the CKD itself and partly to the toxic exposure with 
confounding factors. Further, because of the complex 
interactions between environment, disease susceptibility, 
and genetic susceptibility, the exploration of epigenetic 
mechanisms to meet the challenges of CKD through novel 
ideas of molecular mechanisms is warranted.
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