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Introduction
Pathogenic strains of Escherichia coli have the 
potential to cause a wide variety of infectious 
diseases, including neonatal meningitis, 
septicemia, intestinal tract infection, and 
urinary tract infections (UTIs).[1] UTI is one 
of the most frequent bacterial infections, 
affecting both inpatients and outpatients, and 
E. coli is the major causative pathogen.[2] Due 
to anatomical differences and the hormonal 
milieu of the urinary tract, the probability of 
developing a UTI in women is significantly 
more than men. It is estimated that around 
50%–60% of women will experience a UTI 
during their lifetime.[3]

UTI caused by E. coli strains remains an 
important health problem in many countries 
and leads to considerable morbidity 
costs.[1,4,5] These strains encode various 
virulence factors such as toxins, capsules, 
invasins, and adhesins, which contribute 
to enhanced pathogenicity. The severity 
of UTI reflects the virulence profile of 
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Abstract
Escherichia coli is the major causative pathogen of urinary tract infection (UTI) in humans. Virulence 
and drug resistance play important roles in the pathogenesis of E. coli infections. The aims were to 
investigate the presence of uropathogenic virulence genes and to evaluate a relationship between 
antibiotic resistance and virulence in E. coli from UTI. A total of 132 E. coli were collected between 
April and June 2015 in two hospitals of Sanandaj, Iran. Isolates were examined for susceptibility 
to 16 antibiotic disks using the disk diffusion method and for possession of virulence genes by 
polymerase chain reaction. Associations between antimicrobial resistance and virulence genes were 
investigated. A P < 0.05 was considered significant. Of the 132 isolates, the most prevalent virulence 
gene was pap (31.1%), followed by cnf (28.8%), hly (16.7%), and afa (10.6%). Different patterns 
of virulence genes were identified. A significant association was detected between the simultaneous 
presence of hly and pap. The most effective antibiotics were nitrofurantoin, cefoxitin, and imipenem 
and the least effective were ampicillin, trimethoprim‑sulfamethoxazole, and cefotaxime. An 
association was seen between the presence of cnf and susceptibility to the certain antibiotics, whereas 
strains with a reduced susceptibility to the certain antibiotics were associated with a significantly 
increased prevalence of afa and hly (P < 0.05). These findings suggest a correlation between the 
presence of virulence gene and resistance in E. coli strains from UTI. The results indicate that there 
is a need for surveillance programs to monitor drug resistance in pathogenic E. coli.
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the infecting strain, and the frequency of 
expression of virulence factors is higher in 
more pathogenic strains.[6]

Pyelonephritis‑associated pilus (Pap), 
afimbrial  adehsin (Afa), α‑hemolysin 
(HlyA), and cytotoxic necrotizing factor 
1 (CNF1) are among the most important 
virulence factors of E. coli involved in the 
development of UTI.[7‑9] Pap is one of the 
most commonly found adhesins. Binding of 
P‑fimbrial adhesin to the cell receptors of 
renal tissue leads to mucosal inflammation 
and tissue damage.[7] Afa has been 
implicated in the occurrence of recurrent 
and chronic UTIs.[10] Apart from adhesins, 
exotoxins such as HlyA and CNF1 are also 
implicated in the pathogenesis of UTIs. 
HlyA encoded by hly is the most important 
secreted virulence factor of E. coli isolated 
from UTI. This toxin is able to lyse host 
cells for crossing of the mucosal barriers, 
having access to host nutrients and iron 
stores, and damaging effector immune cells 
such as T‑lymphocytes and neutrophils. 
CNF1 has been shown to have a role in 
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dissemination of strains in the urinary tract. This toxin 
causes bladder cell exfoliation and increases bacterial 
access to the underlying tissue.[8]

Another problem is antibiotic resistance of the E. coli 
strains. The emergence of resistance limits the utility of older 
agents, such as trimethoprim‑sulfamethoxazole (SXT), and 
increases reliance on newer broad‑spectrum agents, such as 
extended‑spectrum cephalosporins and fluoroquinolones. 
Unfortunately, emerging resistance now threatens the use of 
these newer agents as well.[11‑13] Resistance to antimicrobial 
agents is often associated with the spread of transmissible 
plasmids, which may also carry virulence determinants.[14] 
Some studies showed that among clinical isolates of E. coli, 
the production of virulence factors is negatively associated 
with resistance to some antibiotics.[15,16] On the other hand, 
such phenomenon was not observed in other studies.[17‑19] 
The acquisition of resistance and virulent traits may provide 
a benefit for the survival of microorganism. This situation 
may lead to ecological changes and domination of virulent 
antibiotic‑resistant bacteria in the environment.[14]

Hence, the aims of this study were to determine the 
presence of the most important virulence genes involved 
in the development of UTI including pap, afa, cnf‑1, and 
hly[7‑9] among E. coli isolated from UTI and to evaluate 
a possible association between virulence factors and 
susceptibility to antimicrobial agents.

Materials and Methods
Bacterial isolates and identification

In this cross‑sectional study, from April to June 2015, 
132 consecutive nonduplicate E. coli were isolated from 
patients with UTI admitted to Besat and Tohid Tertiary 
Hospitals in Sanandaj, Iran. Sanandaj is the center of 
Kurdistan Province in the west of Iran, with a population 
of more than 300,000. The Besat and Tohid Hospitals 
are referral and teaching hospitals, which are affiliated to 
Kurdistan University of Medical Sciences. UTI was defined 
according to the 2015 European Association of Urology 
guidelines.[20] E. coli isolates were identified according 
to the standard bacteriological and biochemical tests[21] 
including Gram staining, fermentation of lactose, motility, 
ability to produce indole, and lysine decarboxylation. All 
bacterial isolates were preserved at −70°C in Trypticase soy 
broth (Quelab, New Mexico, USA), containing 15% v/v 
glycerol for further investigations.

Antimicrobial susceptibility testing

Susceptibility of E. coli isolates was determined to 
16 antibiotics using the disk diffusion method on 
Mueller‑Hinton agar plates (Merck, Germany) as 
recommended by the 2014 Clinical and Laboratory 
Standards Institute guidelines.[22] The following 
antibiotic disks (Rosco company, Denmark) were tested: 
ampicillin (AM) (10 µg), cefotaxime (CTX) (30 µg), 

ceftazidime (CAZ) (30 µg), imipenem (IPM) (10 µg), 
amoxicillin/clavulanic acid (AMC) (20/10 µg), aztreonam 
(AZT) (30 µg), ciprofloxacin (CP) (5 µg), tetracycline (TE) 
(30 µg), SXT, gentamicin (GM) (10 µg), cefepime (FEP) 
(30 µg), cefoxitin (CFO) (30 µg), amikacin (AN) (30 µg), 
norfloxacin (NOR) (10 µg), nalidixic acid (NA) (30 µg), 
and nitrofurantoin (FM) (300 µg). E. coli ATCC 25922 was 
used as a quality control strain.

DNA extraction and detection of virulence factors by 
polymerase chain reaction

Genomic DNA was extracted from E. coli strains by 
the freeze‑thaw method and used as the template for 
polymerase chain reaction (PCR) reactions.[23] For 
DNA extraction, bacterial pellets prepared from 1.5 ml 
of an overnight culture in brain–heart infusion broth 
(Quelab, New Mexico, USA) were suspended in 200 µl 
sterile distilled water, and the suspensions were heated at 
100°C for 10 min. The suspensions were then immediately 
placed on ice for 5 min. Samples taken through a total of 
three cycles of freezing‑thawing were centrifuged, and 
the supernatants were stored at −20°C as DNA template 
stocks.

Detection of virulence genes was carried out by PCR. 
Amplification of pap, afa, cnf‑1, and hly was performed 
using published primer pairs (SinaClon, Iran) as follows: 
5′‑AACAAGGATAAGCACTGTTCTGGCT‑3′, 5′‑ACCA 
TATAAGCGGTCATTCCCGTCA‑3′ (for hly, amplicon size: 
1177 bp);[24] 5′‑AAGATGGAGTTTCCTATGCAGGAG‑3′, 
5 ′ ‑ C AT T C A G A G T C C T G C C C T C AT TAT T‑ 3 ′ 
(for cnf, amplicon size: 498 bp);[24] 5′‑GCTG 
G G C A G C A A A C T G A T A A C T C T C ‑ 3 ′ , 
5 ′ ‑ C AT C A A G C T G T T T G T T C G T C C G C C G ‑ 3 ′ 
(for afa, amplicon size: 750 bp);[25] and 5′‑GA 
C G G C T G T A C T G C A G G G T G T G G C G ‑ 3 ′ , 
5′‑ATATCCTTTCTGCAGGGATGCAATA‑3′ (for pap, 
amplicon size: 328 bp).[25]

Amplification reactions were done in a total volume of 25 µl 
containing 3 µl DNA extract, 1 U of Taq DNA polymerase, 
0.4 µM of each primer, 1X reaction buffer, 1.5 mM MgCl2, 
and 200 µM of each dNTP (SinaClon, Iran). The PCR was 
performed in a thermal cycler (Eppendorf, Germany) under 
the following conditions: initial denaturation of 5 min at 
94°C followed by 35 cycles of denaturation of 1 min at 
94°C, annealing of 1 min at 65°C, extension of 1 min at 
72°C, and a final extension of 7 min at 72°C. Conditions 
were the same for all genes.

The amplified products were separated on a 1% agarose 
gel (SinaClon) in 0.5X tris‑borate EDTA buffer alongside 
an appropriate molecular size marker (100 bp Plus 
DNA ladder, SinaClon). The amplified products were 
visualized after staining with DNA safe stain (SinaClon) 
and photographed using a UV transillumination 
imaging system. Positive controls were kindly given by 
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Dr. S. Najar Peerayeh (Tarbiat Modares University, Iran) 
and Dr. A. Rashki (University of Zabol, Iran).

Statistical analyses

Data were analyzed using SPSS software version 16.0 
(SPSS, Chicago, IL, USA). The relationship between 
virulence factors and antibiotic susceptibility was 
determined using Pearson’s Chi‑square test or Fisher’s 
exact test. To facilitate our analysis, the isolates showing 
intermediate susceptibility were grouped with the resistant 
strains. A P < 0.05 was considered significant.

Results
A total of 132 E. coli strains were collected from patients with 
UTI between April and June 2015. The average age of the 
patients was 35.7 years; the oldest patient was 93 years (one 
patient) and four 1‑year‑old children were the youngest 
patients. Among the 132 isolates, 107 isolates (81.1%) 
were from females and 25 (18.9%) were from males. 
Forty‑seven (35.6%) of the 132 isolates were from 
hospitalized patients and 85 (64.4%) were from outpatients.

Antimicrobial susceptibility

Antimicrobial susceptibility results showed that all 
isolates (97%) were susceptible to FM, except for four 
isolates. Of the 132 isolates, 122 (92.4%) were susceptible 
to CFO, 116 (87.9%) to IPM, 99 (75%) to AN, and 
95 (72%) to AMC. The susceptibility rate of isolates to 
16 antimicrobial agents is presented in Table 1. Compared 
with the isolates from inpatients, except for AMC, FM, 
IPM, AN, and GM, the frequency of susceptibility to the 
antimicrobial agents was higher or similar in the outpatients 
isolates [Table 1].

Distribution of virulence genes

Prevalence of virulence genes was analyzed by PCR. Of 
the 132 isolates, the pap gene was found in 41 (31.1%) 
isolates, the cnf in 38 (28.8%), the hly in 22 (16.7%), and 
the afa in 14 (10.6%) isolates. Fifty‑seven strains were 
negative for all the studied virulence genes. The prevalence 
of virulence genes was higher in males, except for afa, 
which was detected in a higher prevalence in females than 
in males (11.2% vs. 8%) [Table 2]. Among the studied 
virulence genes, only pap showed a meaningful difference 
of distribution according to sex group (P = 0.01).

Except pap gene, that its prevalence in the inpatient 
group was higher than outpatient group (16/47 [34%] vs. 
25/85 [29.4%]), the prevalence of other virulence genes 
was higher in the outpatient group. The hly, cnf, and afa 
were detected in 7 (14.9%), 12 (25.5%), and 2 (4.3%) of 
the 47 strains collected from inpatients and in 15 (17.6%), 
26 (30.6%), and 12 (14.1%) of the 85 strains collected 
from outpatients, respectively. However, the prevalence of 
virulence genes was not significantly different between the 
two groups (P > 0.05).

To identify phenotypes of the isolates, the prevalence of 
profiles of the virulence genes was ascertained. A total of 
75 (56.8%) isolates were found to harbor at least one of 
the four urogenes investigated. The maximum number of 
detected amplicons in one strain was three of the virulence 
gene regions targeted. Combinations of adhesin and toxin 
genes encoded by E. coli isolates are presented in Table 3. 
Considering all virulence genes together, the studied 
strains exhibited 11 virulence gene profiles, referred to as 
urovirulence profile (UP) followed by an Arabic numeral. 
Of these 11 combinations, the most common gene profile 
was UP1, which was characterized by the presence of only 
the cnf gene (16 isolates) followed by UP2, which was 
found in 15 isolates and characterized by the presence of 
the pap gene only. The least distributed profile was UP11, 
which was detected in only one strain and characterized by 
the simultaneous presence of hly and afa genes.

Table 1: Antimicrobial susceptibility of 132 Escherichia 
coli isolated from urinary tract infection inpatient and 

outpatient groups
Antibiotic Susceptibility, n (%)

Inpatients (n=47) Outpatients (n=85) Total (n=132)
FM 46 (97.9) 82 (96.5) 128 (97)
CFO 41 (87.2) 81 (95.3) 122 (92.4)
IPM 43 (91.5) 73 (85.9) 116 (87.9)
AN 37 (78.7) 62 (72.9) 99 (75)
AMC 36 (76.6) 59 (69.4) 95 (72)
NOR 30 (63.8) 56 (65.9) 86 (65.2)
CAZ 28 (59.6) 56 (65.9) 84 (63.6)
AZT 27 (57.4) 57 (67.1) 84 (63.6)
CP 25 (53.2) 53 (62.4) 78 (59.1)
GM 26 (55.3) 45 (52.9) 71 (53.8)
NA 19 (40.4) 43 (50.6) 62 (47)
FEP 20 (42.6) 41 (48.2) 61 (46.2)
TE 16 (34) 37 (43.5) 53 (40.2)
CTX 14 (29.8) 30 (35.3) 44 (33.3)
SXT 10 (21.3) 30 (35.3) 40 (30.3)
AM 11 (23.4) 27 (31.8) 38 (28.8)
NA: Nalidixic acid, FM: Nitrofurantoin, CFO: Cefoxitin, 
IPM: Imipenem, AN: Amikacin, NOR: Norfloxacin, 
CAZ: Ceftazidime, AZT: Aztreonam, CP: Ciprofloxacin, 
GM: Gentamicin, FEP: Cefepime, TE: Tetracycline, 
CTX: Cefotaxime, SXT: Trimethoprim‑sulfamethoxazole, 
AM: Ampicillin, AMC: Amoxicillin/clavulanic acid

Table 2: Prevalence of the virulence genes among 132 
Escherichia coli isolates from urinary tract infection in 

males and females
Gene n (%) of positive strains 

in female patients (n=107)
n (%) of positive strains 
in male patients (n=25)

P

hly 17 (15.9) 5 (20) 0.61
cnf 29 (27.1) 9 (36) 0.37
afa 12 (11.2) 2 (8) 0.63
pap 28 (26.2) 13 (52) 0.01*
*P<0.05
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[for FEP: susceptible dose dependent]). Exceptions were 
beta‑lactam antibiotics (IPM, CAZ, FEP, AZT, and CFO), 
for which susceptible isolates showed a higher prevalence 
of the pap gene. The afa gene was also more prevalent in 
nonsusceptible isolates, except TE, AN, FM, and AMC, for 
which the susceptible isolates showed a higher prevalence. 
By contrast, the cnf gene was more prevalent in susceptible 
isolates; the only exceptions were GM and FM for which 
nonsusceptible isolates showed a higher prevalence. The 
hly was almost equally distributed between susceptible and 
nonsusceptible groups although was slightly shifted toward 
susceptible isolates group and away from nonsusceptible 
isolates [Table 4].

The possible statistical association between antibiotic 
susceptibility/nonsusceptibility phenotypes and virulence 
genes of isolates was subsequently investigated. 
We found that the distribution of hly and pap in 
relation to antimicrobial resistance phenotypes was 
not different (P > 0.05), except that AN‑susceptible 
isolates significantly exhibited a lower prevalence 
of the hly (P < 0.05). A more analysis revealed two 
further groups of associations: first, an association 
between the presence of afa and nonsusceptibility to 
beta‑lactams (CTX and FEP) and the quinolone NA 
as well as the fluoroquinolone CP (P < 0.05), and 
second, an association between the presence of cnf 
and susceptibility to beta‑lactams (AM, IPM, CAZ, 
FEP, AMC), quinolone (NA), and fluoroquinolones 
(CP, NOR) (P < 0.05) [Figure 1].

A significant association was detected between the 
simultaneous presence of hly and pap genes (P < 0.001), 
which corresponded to 14 (10.6%) strains. Sixteen isolates 
carried both pap and cnf, 10 strains hly and cnf, and three 
isolates pap and afa but lacked significance according to 
the Chi‑square and Fisher’s tests.

Associations between antimicrobial resistance and 
virulence traits

Table 4 shows the prevalence of each virulence gene 
according to antibiotic susceptibility status of isolates. 
In general, pap was more prevalent in nonsusceptible 
isolates group (resistant plus intermediately resistant 

Table 3: Virulence patterns identified among 132 
Escherichia coli isolated from urinary tract infection

Profile Virulence genes Total number of strains
hly cnf afa pap

UP1 ‑ + ‑ ‑ 16
UP2 ‑ ‑ ‑ + 15
UP3 ‑ + ‑ + 9
UP4 ‑ ‑ + ‑ 7
UP5 + ‑ ‑ + 7
UP6 + + ‑ + 7
UP7 + ‑ ‑ ‑ 4
UP8 ‑ + + ‑ 3
UP9 ‑ ‑ + + 3
UP10 + + ‑ ‑ 3
UP11 + ‑ + ‑ 1
UP: Urovirulence profile, +: Positive, ‑: Negative

Table 4: Distribution of virulence genes according to antibiotic susceptibility among 132 Escherichia coli isolated from 
urinary tract infection

Antibiotics Prevalence of pap (%) Prevalence of afa (%) Prevalence of hly (%) Prevalence of cnf (%)
Susceptible 

isolates
Nonsusceptible 

isolatesb
Susceptible 

isolates
Nonsusceptible 

isolates
Susceptible 

isolates
Nonsusceptible 

isolates
Susceptible 

isolates
Nonsusceptible 

isolates
CP (na=78) 28.2 35.2 3.84 20.37 16.7 16.7 35.9 18.5
SXT (n=40) 25 33.7 5 13 10 19.6 37.5 25
GM (n=71) 29.6 32.8 8.5 13.1 15.5 18 28.2 29.5
AM (n=38) 23.7 34 5.3 12.8 13.2 18.1 42.1 23.4
CTX (n=44) 25 34.1 0 15.9 18.2 15.9 34.1 26.1
TE (n=53) 28.3 32.9 11.3 10.1 17 16.5 34 25.3
IPM (n=116) 32.8 18.8 10.3 12.5 15.5 25 31.9 6.2
NOR (n=86) 30.2 32.6 7 17.4 15.1 19.6 34.9 17.4
CAZ (n=84) 32.1 29.2 7.1 16.7 19 12.5 36.9 14.6
NA (n=62) 29 32.9 3.2 17.1 21 12.9 37.1 21.4
AN (n=99) 27.3 42.4 11.1 9.1 12.1 30.3 30.3 24.2
FM (n=128) 29.7 75 10.9 0 15.6 50 28.1 50
FEP (n=61) 32.8 29.6 4.9 15.5 23 11.3 37.7 21.1
AMC (n=95) 28.4 37.8 11.6 8.1 18.9 10.8 35.8 10.8
AZT (n=84) 32.1 29.2 7.1 16.7 19 12.5 34.5 18.8
CFO (n=122) 31.1 30 9.8 20 18 0 31.1 0
an: Number of susceptible isolates to the antibiotic, bNonsusceptible: resistant plus intermediately resistant [for FEP: SDD]. 
CP: Ciprofloxacin, SXT: Trimethoprim‑sulfamethoxazole, GM: Gentamicin, AM: Ampicillin, CTX: Cefotaxime, TE: Tetracycline, 
IPM: Imipenem, NOR: Norfloxacin, CAZ: Ceftazidime, NA: Nalidixic acid, AN: Amikacin, FM: Nitrofurantoin, FEP: Cefepime, 
AMC: Amoxicillin/clavulanic acid, AZT: Aztreonam, CFO: Cefoxitin, SDD: Susceptible dose dependent
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Discussion
UTI is one of the important bacterial infections, affecting 
both inpatients and outpatients, and E. coli is the leading 
causative agent of UTI. It is thought that the pathogenic 
potential of E. coli isolates is dependent on the presence of 
various virulence factors.[1] In our study, of the 132 E. coli 
isolated from UTI, the pap gene was present in 31.1%, the 
afa in 10.6%, the cnf in 28.8%, and the hly in 16.7% of 
isolates. The hly was found to be significantly associated 
with pap. The pap adhesion gene was the most commonly 
identified virulence gene, in agreement with other 
reports.[10,26,27] It has been shown that transformation of 
E. coli with pap sequence makes it a more potent inducer 
of the host response. It is conceivable that in some strains 
of E. coli, pap has important role in the progression to 
more severe infections of the urinary tract.[6] Isolates from 
outpatients showed a higher prevalence of the studied 
virulence genes except pap gene.

In recent years, management of UTIs has become 
increasingly problematic due to the emergence of 
drug‑resistant E. coli strains in many countries.[11,13,28] The 
emergence of resistance limits the utility of older agents, 
such as SXT, which results in increased reliance on 
newer broad‑spectrum agents, such as extended‑spectrum 

cephalosporins and fluoroquinolones.[29] Antibiotic 
sensitivity test in our isolates showed FM as the most 
effective followed by CFO and IPM. AM, SXT, and CTX 
were the least effective antibiotics. The isolates from 
outpatients were more resistant to FM, IPM, AMC, AN, 
and GM than those from inpatients, in particular AMC. 
The likely reasons for the high resistance rates to these 
antibiotics among outpatients are the inappropriate use 
of these antimicrobials, ineffective infection control and 
health programs, and cross‑resistance among antibiotics 
of the same class, such as AN and GM.[30] In humans, 
80%–90% of antimicrobial drugs are used in outpatients, 
and it is estimated that 20%–50% of the use of antibiotics 
is questionable.[31] Resistant strains can be traced from 
the community to hospitals and contribute to multidrug 
resistance in hospital settings.[32]

Several studies indicate that resistance to some antibiotics 
is associated with decreased virulence traits among 
clinical E. coli isolates.[15,16] On the other hand, such 
phenomenon was not observed in some other studies.[17‑19] 
We observed an association between the presence of cnf 
and susceptibility to the tested beta‑lactams, quinolone, and 
fluoroquinolones [Figure 1]. However, E. coli strains with 
a reduced susceptibility to the studied extended‑spectrum 
cephalosporins (CTX and FEP), quinolone NA, and 
fluoroquinolone CP were associated with a significantly 
increased prevalence of afa. E. coli strains expressing 
adhesins of the Afa family have unique renal tissue tropisms 
that favor the establishment of chronic and/or recurrent 
infections.[8] Moreover, isolates with a reduced susceptibility 
to AN significantly exhibited a higher prevalence of the 
hly, resulting in a slightly increased inferred virulence 
potential compared with susceptible isolates. Compared to 
their susceptible counterparts, resistant bacterial infections 
with more virulence factors are generally associated with 
increased morbidity, mortality, and treatment costs.[33]

The reasons for this correlation are not entirely clear. 
A biological basis for the association of antimicrobial 
resistance with virulence genes in E. coli has been 
previously reported for certain genes; for example, an 
80‑megadalton plasmid coding for AM resistance has been 
associated with genes for ST (heat‑stable enterotoxin) 
synthesis.[34] Recently, some in vitro studies have shown 
that decreased pathogenicity of E. coli is associated with the 
acquisition of quinolone resistance.[35] Soto et al. suggested 
that subinhibitory concentrations of quinolones induce the 
SOS system response (DNA repairing mechanism), which 
could favor in vitro loss of virulence genes in E. coli 
strains. According to their results, the virulence genes may 
have been lost in exchange for resistance.[36] However, the 
finding that spontaneous fluoroquinolone‑resistant mutants 
derived from hemolytic fluoroquinolone‑susceptible strains 
are still able to produce hemolysin[18] suggested otherwise. 
Although one hypothesis does not exclude the other, 
further studies are needed to consolidate the findings. It is 

Figure 1: Relationships between virulence factors and antimicrobial 
susceptibility: (a) susceptibility to the antibiotics shown was significantly 
related to the lower prevalence of hly and afa  genes.  (b) A  significant 
relationship between presence of cnf gene and susceptibility to 
antibiotics (*P < 0.05)

b

a
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also possible that ecological factors such as the geographic 
origin of isolates represent important additional factors that 
should be considered.[37] It is worthwhile to investigate 
whether gene linkage on plasmids or other mobile genetic 
elements underlies the associations observed in our study.

In conclusion, this study describes the prevalence of 
resistance phenotypes and virulence genes in E. coli 
isolates from UTI in Kurdistan Province, Iran. The 
study also shows the relationship between antimicrobial 
resistance and virulence genes. The increasing emergence 
of antimicrobial resistance and relationships between 
resistance and virulence genes suggest that there is a great 
need for surveillance programs to monitor drug resistance 
in pathogenic bacteria. Such surveillance programs 
would provide appropriate guidelines for restriction of 
antimicrobial use and would be important steps in efforts to 
understand, prevent, and control the emergence and spread 
of antimicrobial resistance and virulence genes.
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