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ABSTRACT

Paraoxonase (PON) is an aryldialkylphosphatase, which reversibly binds and hydrolyzes organophosphates. The PON family has 
three members (PON1, PON2 and PON3); they share structural properties and enzymatic activities. PON1 is shown to reside 
over high density lipoprotein (HDL) and has both antioxidant and antiatherogenic functions. Function of PON2 and PON3 are 
speculative and still under research. Several methodologies were developed over the years to determine the activity and mass 
of PON1, of which spectrophotometer-based methods using certain chemicals as substrate predominate. Several studies have 
shown decreased levels of PON1 in chronic renal failure (CRF) patients, particularly those on hemodialysis. The role of PON1 in 
development of cardiovascular disease has drawn considerable attention in recent years. Several authors have shown decreased 
levels of HDL and PON1 activity in CRF patients on hemodialysis and reported this to be a risk factor in the development of 
CVD. Enhancement or maintenance of the PON1 activity may prevent development of CVDs and its consequences in patients 
on hemodialysis.
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Introduction

Paraoxonase (PON) (EC 3.1.8.1, aryldialkylphosphatase) 
is a protein of 354 amino acids with a molecular mass 
of 43 kDa.[1,2] There are three known genotypic forms of 
PON which are coded by the set of genes PON1, PON2 
and PON3, respectively, and are located on long arm 
of chromosome 7.[3-5] PON1 is synthesized in liver 
and transported in plasma by binding to high density 
lipoprotein (HDL); PON2 is ubiquitously expressed 
intracellular protein;[6] and PON3 is similar to PON1 in 
activity but differs from it in substrate specificity. [7] The 
exact function of the different family members is not clear, 
although the conservation among the individual family 
members across species suggests a strong evolutionary 
pressure to preserve these functional differences.[5] 
Studies performed during last ten years indicate that 
PON has multiple functions. PON protects low density 
lipoprotein (LDL) from oxidative modification by reactive 
oxygen species (ROS), and thus, significantly contributes 
to the atheroprotective effect of HDL.[8-10] 

The enzyme also hydrolyzes phospholipid hydroperoxides 
and cholesterol hydroperoxides (esterase activity) and 
reduces lipid peroxides to respective hydroxides as well 
as degrades peroxides (peroxidase activity).[11] PON1 by 
binding to HDL protects it from peroxidation, and hence, 
improves reverse cholesterol transport.[12] PON1 also 
protects plasma membrane from free radical injury.[13] 
Furthermore, PON1 degrades bioactive phospholipids, 
such as platelet activating factor, thereby preventing 
intravascular coagulation.[14] Recent studies have 
indicated that PON1 possesses lactonase activity and is 
involved in the metabolism of statins, spironolactone, and 
glucocorticoid lactones. [15] It hydrolyses homocysteine 
thiolactone and prevents homocysteinemia, a process 
involved in atherogenesis.[16] The product of PON2 has 
not yet been identified in biological tissue, but the PON3 
gene product has recently been identified as a lactonase 
located on rabbit HDL.[17]

The preferential association of PON1 with HDL is 
mediated in part by its signal peptide.[5] Binding of PON1 
to HDL helps in transport across the plasma membrane 
of HDL or phospholipid expressing cells.[5] Major part of 
this enzyme in serum is associated with HDL particles.[18] 
Although, apolipoprotein A-I (Apo A-I) is not necessary for 
PON1 association with HDL, but its activity is stabilized 
in the presence of the Apo A-I. Only in the absence of 
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both lecithin cholesterol acyltransferase (LCAT) and 
apolipoprotein E (Apo E) PON1 is associated with non-
HDL lipoproteins.[7] In these settings PON1 is found to be 
associated with very low density lipoprotein (VLDL) and 
chylomicrons.[11,19] No PON1 is bound to LDL particles,[20] 
although PON1 is indirectly involved in protection of 
LDL from oxidation and hence in the prevention of 
atherosclerosis.[21]

PON2 is absent in plasma but is expressed in many 
tissues. [6] PON3 is found to be associated with HDL 
particles.[7,17] Both PON2 and PON3 posses antioxidant 
properties and lactonase activity, but unlike PON1 they 
lack paraoxon or phenyl acetate hydrolyzing activity.[22] 
However, Draganov et al. have observed PONs exhibiting 
overlapping and distinct substrate specificities.[23] Authors 
reported that only PON1 shown organophosphatase 
activity (acting on substrates like paraoxon and 
diazoxon), while arylesterase activity (acting on 
substrates like phenyl acetate) and overlapping lactonase 
activity were shown by all the three PONs. However, it 
was reported that PON2 hydrolyzed N-acyl-homoserine 
lactones, while bulky drug substrates such as lovastatin 
and spironolactone are hydrolyzed only by PON3.[23]

There is wide inter-individual variation in the capacity of 
PON1 to hydrolyze organophosphates and other organic 
esters.[5] In contrast, organophosphates are suicidal 
inhibitors of other organic esterase, such as pseudo 
cholinesterase in serum and acetyl cholinesterase at 
synapses and the neuromuscular junctions, because 
they bind irreversibly to them.[13] Thus, PON1 is the 
main means of protection of the nervous system against 
the neurotoxicity of organophosphates entering the 
circulation. It was first discovered in this context and 
its name reflects its ability to hydrolyze paraoxon, a 
metabolite of the insecticide parathion.[13] PON1 levels are 
influenced by a variety of environmental factors, including 
statins and cytokines.[5] Statins increase PON1 activity 
by upregulating hepatic PON1 expression. [5] Expression 
of cellular PON2 was also found to be up-regulated by 
statins. Nutritional antioxidants, such as polyphenols, 
increase PON1 mRNA expression and activity by an aryl 
hydrocarbon receptor-dependent mechanism.[6] 

Paraoxonase Assay

Various methods have been developed to determine 
PON1 activity; the earliest were the spectrophotometer 
based methods using different chemicals as substrate for 
the enzyme. Schiavon et al.[24] and Paragh et al. [25] have 
determined PON1 activity using paraoxon (O,O-diethyl-O-
p-nitrophenyl phosphate) as the substrate. Hasselwander 
et al. measured the PON1 activity using phenylacetate 

as substrate.[26] The PON phenotype distribution was 
determined by the dual-substrate method,[27] which 
calculates the ratio of salt-stimulated PON1 activity at pH 
10.5 and arylesterase activity.[28] PON1 requires calcium 
for activity and is inactivated in the presence of ethylene 
diamine tetracetic acid (EDTA). Because of this, studies 
to date have used serum or heparinized plasma for both 
activity and mass assays of PON1.[29]

Whole serum and EDTA plasma were analyzed by 
SDS-electrophoresis and western blot using anti PON1 
monoclonal antibody 4C10. Because PON1 has one 
disulfide and one free cysteine residue, the samples were 
reduced with dithiothreitol before electrophoresis. [29] 
Western blot identified a major PON1 band with a 
molecular mass of 45 kDa and two minor bands of 
40 and 35 kDa in both serum and EDTA plasma.[29] This 
established that PON1 is inactive, but structurally intact 
in EDTA plasma and suggested that a mass assay could 
be developed based on SDS-electrophoresis and western 
blot.[29] Kujiraoka et al. developed a sensitive sandwich 
enzyme-linked immunosorbent assay (ELISA), using 
two monoclonal antibodies against PON1, to measure 
serum PON1 concentration.[30] In recent times PON1 
paraoxonase activity in serum is determined by a highly 
sensitive fluorometric assay (excitation/emission maxima 
360/450 nm), for the organophosphate activity of PON-1, 
based on the hydrolysis of a fluorogenic organophosphate 
analog (Molecular Probes, Eugene, OR). This method has 
increased specificity and sensitivity and has advantages 
over other substrates, such as phenylacetate. The average 
intra-assay CV for PON1 activity using this method 
is 1.9%.[31] 

Role of paraoxanase in atherosclerosis
PON1 expression is partly controlled by its molecular 
variation at gene locus.[32] Two polymorphic sites have 
been described in the coding region: a leucine (L) to 
methionine (M) transition at position 55 (L55M) and a 
glutamine (Q) to arginine (R) transition at position 192 
(Q192R). The L55M polymorphism affects the enzyme 
concentration, whereas the Q192R polymorphism affects 
the catalytic efficiency, but not the concentration. [33,34] Four 
polymorphisms in the promoter sequence of the PON1 
gene (107C/T, 162A/G, 824G/A, 907G/C) also contribute 
to the variability in protein expression. [35] PON Q and 
PON R may act on different substrates generated during 
LDL oxidation and may possess different sensitivities to 
the action of peroxides formed during LDL oxidation.[36] 
These differences may contribute to the divergence in the 
possible antiatherosclerotic roles of the PON allozymes.[36] 
It has been suggested that the active site in PON1 that 
protects LDL differs from the active sites for its paraoxone 
and aryl esterase activities.[36] 
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Sorenson et al. have demonstrated that PON is a 
lipid-dependent enzyme; in fact, the conformation of PON 
within the hydrophobic environment of HDL is crucial for 
its activity. Phospholipids, especially those with long fatty 
acid chains, stabilize PON enzyme and are required for 
binding of PON1 at the lipoprotein surface.[37] The PON1 
breakdown lipid peroxides before they could accumulate 
on LDL[8,9,38] and protects against coronary artery disease 
there by preventing oxidation of LDL.[39] Oxidized LDL 
is known to possess atherogenic and pro-inflammatory 
properties.[40] On the other hand HDL protects against 
CVD by means of reverse cholesterol transport.[40] Even 
though physiological role of PON1 in vivo remains to be 
clarified, the inhibition of both LDL and HDL oxidation 
may contribute to protection against CVD.[35] 

In addition to genetic influences, PON1 concentration 
and activity could be modified by lifestyle determinants 
such as smoking,[41,42] vitamin C and E consumption,[43] 
and alcohol intake.[44] Therefore, studying PON1 levels 
and activity in conjunction with variation at the gene 
level gives a more complete view of the role of PON1 
in the development of atherosclerosis.[37] There is also 
considerable interest in the potential pharmacological 
effects on PON1 activity. Although there is conflict in 
findings about the role of lipid lowering drugs on activity 
of PON1, few studies report increase in PON1 activity 
by fibric acid derivatives[45,46] and statin.[47] Though, 
polyphenols in mice have shown to increase serum PON1 
activity but such findings are not consistent in human 
beings.[48]

Role of PON1 in preventing atherosclerosis in chronic 
renal failure patients on hemodialysis
CVD is the major cause of morbidity and mortality in 
patients with chronic renal failure (CRF) and accounts for 
up to 50% of all deaths.[49] CRF is frequently associated 
with disturbances in lipoprotein transport, alterations 
in lipoprotein concentration, and abnormalities in lipid 
and apoprotein composition of lipoproteins.[50-53] The 
activities of key enzymes in the lipoprotein metabolism 
(lipoprotein lipase, hepatic lipase, lecithin-cholesterol 
acyltransferase) may be diminished. [54-56] This increased 
susceptibility in these patients is partly explained by 
increased LDL oxidation and enhance atherogenesis.[28] 
The pathogenesis of CVD in CRF is multifactorial, 
including several risk factors. [57,58] But the exact cause for 
increased susceptibility of CRF patients for atherogenesis 
is still under investigation. 

Several studies have shown decreased activity of PON1 in 
CRF patients, particularly on maintenance hemodialysis.[59] 
The decrease in PON1 activity, hence the reduction in 
its antioxidant and antiatherogenic properties could be 

an essential factor for premature vascular aging.[59] The 
decrease in PON1 activity could be the result of lower 
HDL concentrations in CRF patients, given that HDL is 
the main serum carrier of PON1. The studies have shown 
that HDL concentration and phenotypic distribution of 
may not be the only determining factors.[25] Other possible 
explanations for the decrease in PON1 activity in CRF 
patients may be unfavorable uremic environment due to 
the retention of uremic toxins and or “middle molecules” 
including advanced glycation endproducts (AGE), free 
adducts and peptides could play a mechanistic role in 
decreasing PON1 activity.[60,61] If these molecules are 
proved to be causal then it will open new treatment option 
in preventing development of CVDs by designing drugs 
against these molecules. On the other hand the possibility 
of an endogenous circulating inhibitors of PON in blood 
of CRF patients was dismissed by few authors.[24,28,61]

There are few studies on PON1 activity in Indian scenario, 
Prakash et al.[62] have shown significant decreased PON1 
activity in CRF patients on conservative management. 
Decrease was more significant in CRF patients on 
hemodialysis therapy. Authors have also reported significant 
positive correlation PON1 with HDL and other antioxidants 
like protein thiols, and negative correlation with LDL and 
lipidhydroperoxises. Other authors also reported similar 
decrease in PON1 activity in CRF patients on conservative 
management, and they reported a good correlation between 
serum creatinine and lipid hydroperoxides whereas a 
negative relationship was seen between PON1 and protein 
thiols.[63] Similarly, Krishnaswamy et al. have reported 
significant decrease in PON1 activity in CRF patients on 
hemodialysis and peritoneal dialysis, however, they found 
normal PON1 levels in renal transplant patients. They have 
also reported significant increase in antibodies to oxidized 
LDL in hemodialysis group compared to peritoneal dialysis 
and transplant subjects.[64]

Schiavon et al.[65] found that the serum PON1 activity was 
significantly reduced in uremic patients. They also report 
that altered HDL subfraction is likely to be the main cause 
of the decreased PON1 activity. Other authors report that 
one possible cause of the PON activity decrease could 
be the lower HDL and apo-AI levels in CRF patients.[66] 
Reduced PON1 activity in patients with CRF may indicate 
antioxidant capacity of HDL. This may increase oxidation 
of LDL by lipid peroxidation, thereby contributing to the 
accelerated development of atherosclerosis in CRF.[63] 
It is also reported that PON1 activity is decreased with 
increase in severity of renal failure.[63]

Patients on long-term hemodialysis have reduced PON1 
activity and this could be related to reduced HDL-
cholesterol and apoAI levels.[67] Increased high sensitive 
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C-reactive protein (HS-CRP) associated with abnormal 
lipoprotein profile, decreased PON1 activity, and 
increased oxidative stress linked to uremia may contribute 
to increased cardiovascular risk in people undergoing 
hemodialysis.[62,68] PON1 activity has shown to correlate 
well with the oxidative stress markers.[62,68] The PON1 
activity is shown to be decreased significantly in 
hemodialysis patients with or without hepatitis C virus 
(HCV) infection. Furthermore, presence of HCV infection 
did not affect the PON1 activity in hemodialysis patients.[69]

PON1 has shown to have thiolactonase activity and 
physiologically prevent accumulation of homocysteine. [70] 
Decreased PON1 activity in CRF patients and CRF 
patients on hemodialysis may increase homocysteine 
level. This altered mechanism along with reduced renal 
clearance of homocysteine in CRF patients may cause 
increased accumulation of homocysteine thiolactone and 
may augment protein homocysteinylation, which may 
predispose them to early atherogenesis.[71,72] Although, 
hemodialysis treatment decreases total homocystein 
levels by approximately 30-40%, but levels rebound 
to their elevated pretreatment values.[73] Reports on 
correlation of homocysteine levels with PON1 activity 
in CRF patients are not consistent, Janel et al.[74] and 
Greece et al.[71] observed an inverse correlation between 
PON1 activity and homocysteinemia, however no such 
correlation was observed by Dronca et al.[73]

Conclusion

PON is an enzyme with 354 amino acids and 43 kDa. Of 
the three isoforms (PON1-3), PON1 has been well studied 
in different disease conditions; PON1 is an antioxidant 
and antiatherogenic enzyme situated over HDL. PON1 
activity is shown to be decreased in CRF patients, 
particularly those on hemodialysis, which may increase 
susceptibility to CVD. Although, the exact cause and effect 
relation between decrease in PON1 and atherogenesis 
in CRF patients is not clear, but the reports can lead to 
development of possible therapeutic target to prevent 
development of CVD in this patient population.
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