# Flow Cytometry as a Diagnostic Tool in Monoclonal Gammopathy of Renal Significance

## Dear Editor,

Renal diseases associated with monoclonal gammopathy without symptomatic multiple mveloma (MM). Waldenstrom's macroglobulinemia (WM), or chronic lymphocytic leukemia (CLL) are increasingly known.<sup>[1]</sup> Many of these patients have a small clonal population of plasma cells (PCs) or B cells. The International Kidney and Monoclonal Gammopathy Research group (IKMG) introduced the term monoclonal gammopathy of renal significance (MGRS) in 2012.<sup>[1]</sup> The MGRS includes monoclonal gammopathy of uncertain significance (MGUS), smoldering MM, smoldering WM, monoclonal B-cell lymphocytosis (MBL), CLL, and low-grade B-NHL associated with renal involvement.<sup>[1,2]</sup> The diagnosis of MGRS is based on renal biopsy and monoclonal protein identification. B-cell or PC clone identification is paramount for a clone-directed therapy for long-term hematologic response.<sup>[2]</sup> As these clones are small, a highly sensitive technique like flow cytometry (FCM) should be used to identify clonality.<sup>[3]</sup> It is important to identify MGRS as these patients do not respond well to immunosuppressive therapy, have a high rate of recurrence post renal transplantation, and can progress to corresponding hematological malignancy.<sup>[4]</sup>

We are describing two cases of MGRS where we could confirm the presence of a small clonal PC population using FCM. The case characteristics are listed in Table 1.

| Table 1: Clinical characteristics of the two cases of MGRS                               |                                                                                                                   |                                                                                                                             |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | Case 1                                                                                                            | Case 2                                                                                                                      |
| Age in years/sex                                                                         | 55/Female                                                                                                         | 49/Male                                                                                                                     |
| Renal biopsy                                                                             | C3 glomerulopathy                                                                                                 | Monoclonal immunoglobulin deposition<br>disease (IgG lambda)                                                                |
| Clinical symptoms                                                                        | Bilateral lower limb swelling, periorbital swelling, hematuria and hypertension, transfusion-dependant anemia     | Periorbital swelling, hypertension, progressive renal dysfunction requiring dialysis                                        |
| Duration of symptoms                                                                     | 1 year                                                                                                            | 1.2 years                                                                                                                   |
| Hb (g/dL)                                                                                | 6.2                                                                                                               | 8.3                                                                                                                         |
| TLC (×10 <sup>6</sup> /µL)                                                               | 5.2                                                                                                               | 7.3                                                                                                                         |
| Platelets (×10 <sup>6</sup> /µL)                                                         | 246                                                                                                               | 187                                                                                                                         |
| Peripheral blood smear                                                                   | Normocytic normochromic anemia, mild rouleaux formation                                                           | Normocytic normochromic anemia                                                                                              |
| Creatinine (mg/dL)                                                                       | 4.5                                                                                                               | 10.18                                                                                                                       |
| 24-h urine protein (g/24 h)                                                              | 1.5                                                                                                               | 1.8                                                                                                                         |
| SPEP (M-spike) (g/dL)/IFE                                                                | 0.8, IgG kappa                                                                                                    | 0.2, IgG lambda                                                                                                             |
| sFLC (kappa: lambda)                                                                     | 4.9                                                                                                               | 0.2                                                                                                                         |
| Imaging<br>(whole-body CT scan/skeletal survey)                                          | No skeletal lesions                                                                                               | No skeletal lesions                                                                                                         |
| Renal biopsy (MGRS-related lesion)                                                       | C3 glomerulopathy                                                                                                 | MIDD                                                                                                                        |
| Plasma cell % on bone marrow aspirate and biopsy                                         | 6%; 15% binucleate forms and Dutcher bodies seen                                                                  | 9%; 9%                                                                                                                      |
| IHC                                                                                      | Polyclonal pattern                                                                                                | Polyclonal pattern                                                                                                          |
| Flow cytometry                                                                           |                                                                                                                   |                                                                                                                             |
| % Abnormal plasma cells in viable nucleated<br>cells Abnormal to total plasma cell ratio | 0.1%<br>0.5                                                                                                       | 0.8%<br>0.8                                                                                                                 |
| FISH panel for del 13q14.3, del 17p13,<br>t (4;14), t (11;4), t (14;16)                  | Inadequate sample                                                                                                 | del 13q14.3 was found in 13% of plasma cells                                                                                |
| Therapy                                                                                  | Received three cycles of VCD                                                                                      | Completed two cycles of VCD                                                                                                 |
| Response                                                                                 | Normal serum free light chain ratio, M<br>spike- 0.35 g/dL, Hb- 8 g/dL with infrequent<br>transfusion requirement | Reduced frequency of dialysis from twice<br>a month before diagnosis to once in last 2<br>months post initiation of therapy |

CT=computed tomography, FISH=fluorescence *in situ* hybridization, Hb=hemoglobin, IHC=immunohistochemistry, MGRS=monoclonal gammopathy of renal significance, VCD=bortezomib, dexamethasone, and cyclophosphamide, SPEP=serum protein electrophoresis, IFE=Immunofixation electrophoresis, sFLC=serum free light chain, MIDD=Monoclonal immune deposit disease



Figure 1: Plasma cell immunophenotyping in case 1: plasma cell gating on CD38/CD138 (plot 1), plasma cell gate refinement on CD38/CD45 (plot 2), abnormal PCs (blue), normal PCs (orange), and mature lymphocytes (green) on CD19/CD45 (plot 3), CD56 expression with CD81 loss in abnormal PCs, while the normal PCs express CD81 and are negative for CD56 (plot 4), κ-restricted abnormal PCs and polyclonal B cells (purple) (plot 5), polyclonal normal PCs (orange) and B cells (purple) (plot 6). PC = plasma cell

FCM for PCs was performed on the bone marrow (BM) sample collected in ethylenediaminetetraacetic acid (EDTA). The sample was lysed and staining done using a panel of antibodies against CD38-APC-Cy7, CD138-PE, CD45-PerCP-Cy5.5, CD19-PE-Cy7, CD27-FITC, CD81-FITC, CD56-APC, CD117-APC, intracellular anti-kappa-APC, and anti-lambda-FITC. Specimens were acquired using three-laser BD FACS Canto-II (BD Biosciences, San Jose, CA, USA) and analyzed on BD FACS Diva software version 8.0.1.

Case 1 showed 0.2% PCs on CD38, CD138, CD45, and side scatter (SSC) gating. Of these, half, that is, 0.1% PCs, showed an abnormal immunophenotype (CD56+/CD19-/CD81-/CD45) with a  $\kappa$ -restriction [Figure 1]. Case 2 showed 0.9% PCs on CD38, CD138, CD45, and SSC gating, including 0.8%  $\lambda$ -clonal PCs with an abnormal immunophenotype (CD56+/CD19-/CD27-/CD45 partial loss).

In both cases, clonality in BM could be proven on FCM, whereas immunohistochemistry showed a polyclonal population. Clonal identification is important as same renal lesions can be found in different hematological disorders and treatment varies depending upon the type of clone (B cell/PC).<sup>[2]</sup> Immunohistochemistry could be useful only when a major PC clone is present and polyclonal population is lacking.<sup>[2]</sup> However, immunohistochemistry has low sensitivity when less number of abnormal PCs are admixed with polyclonal population.<sup>[3]</sup> FCM has the advantage of studying a large number of cells and simultaneous measurement of multiple antigenic expressions. Sensitive

FCM can detect monoclonal PCs at a sensitivity of  $10^{-4}$ – $10^{-6}$  and can discriminate between MGUS and MM. The number of residual polyclonal PCs is a useful discriminating marker between MGUS and MM.<sup>[5]</sup> MGUS usually has more than 5% normal plasma cells (NPCs) within total BM PCs (both our cases showed NPCs of 50% and 20%, respectively).<sup>[5]</sup>

To conclude, characterization and clonality identification of PCs or B cells in BM by FCM is a must in cases of MGRS as it is highly sensitive and guides in appropriate decision-making to guide correct therapy.

#### Acknowledgments

We would like to acknowledge the staff of Department of Hematology, AIIMS, New Delhi.

#### **Financial support and sponsorship**

Nil.

#### **Conflicts of interest**

There are no conflicts of interest.

# Asish Rath, Jasmita Dass, Ganesh Kumar Viswanathan, Rishi Dhawan, Mukul Aggarwal, Manoranjan Mahapatra

Department of Hematology, All India Institute of Medical Sciences, New Delhi, India

Address for correspondence: Dr. Jasmita Dass, Department of Hematology, All India Institute of Medical Sciences, Room No. 206, AIIMS, New Delhi, India. E-mail: jasmita@aiims.edu, drjasmita@gmail.com

### References

- Leung N, Bridoux F, Batuman V, Chaidos A, Cockwell P, D'Agati VD, et al. The evaluation of monoclonal gammopathy of renal significance: A consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol 2019;15:45-59.
- Jain A, Haynes R, Kothari J, Khera A, Soares M, Ramasamy K. Pathophysiology and management of monoclonal gammopathy of renal significance. Blood Adv 2019;3:2409-23.
- Kumar S, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol 2010;23:433-51.
- 4. Leung N, Bridoux F, Nasr SH. Monoclonal gammopathy of renal significance. N Engl J Med 2021;384:1931-41.
- Pérez-Persona E, Vidriales MB, Mateo G, García-Sanz R, Mateos MV, de Coca AG, *et al.* New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007;110:2586-92.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

| Access this article online |                                           |  |
|----------------------------|-------------------------------------------|--|
| Quick Response Code:       | Website:<br>https://journals.lww.com/ijon |  |
|                            | <b>DOI:</b><br>10.4103/ijn.ijn_335_22     |  |

How to cite this article: Rath A, Dass J, Viswanathan GK, Dhawan R, Aggarwal M, Mahapatra M. Flow cytometry as a diagnostic tool in monoclonal gammopathy of renal significance. Indian J Nephrol 2023;33:321-3.

Received: 10-10-2022, Accepted: 15-11-2022, Published: 08-03-2023

© 2023 Indian Journal of Nephrology | Published by Wolters Kluwer - Medknow