Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:1045

Official publication of the Indian Society of Nephrology
 ~  Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~  Article in PDF (450 KB)
 ~  Citation Manager
 ~  Access Statistics
 ~  Reader Comments
 ~  Email Alert *
 ~  Add to My List *
* Registration required (free)  

  Case Report
   Article Figures

 Article Access Statistics
    PDF Downloaded98    
    Comments [Add]    
    Cited by others 1    

Recommend this journal


  Table of Contents  
Year : 2014  |  Volume : 24  |  Issue : 3  |  Page : 189-192

Multifocal bacterial osteomyelitis in a renal allograft recipient following urosepsis

1 Department of Nephrology, Christian Medical College Hospital, Vellore, Tamil Nadu, India
2 Department of Microbiology, Christian Medical College Hospital, Vellore, Tamil Nadu, India
3 Renal Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia

Date of Web Publication6-May-2014

Correspondence Address:
A T Valson
Department of Nephrology, Christian Medical College Hospital, Vellore - 632 004, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0971-4065.132022

Rights and Permissions


Non-tubercular bacterial osteomyelitis is a rare infection. We report on a renal allograft recipient with osteomyelitis complicating urosepsis, manifesting as a multifocal infection poorly responsive to appropriate antibiotics and surgical intervention and culminating in graft loss.

Keywords: Escherichia coli , osteomyelitis, renal transplant, urinary tract infection

How to cite this article:
Valson A T, David V G, Balaji V, John G T. Multifocal bacterial osteomyelitis in a renal allograft recipient following urosepsis. Indian J Nephrol 2014;24:189-92

How to cite this URL:
Valson A T, David V G, Balaji V, John G T. Multifocal bacterial osteomyelitis in a renal allograft recipient following urosepsis. Indian J Nephrol [serial online] 2014 [cited 2021 Nov 30];24:189-92. Available from:

  Introduction Top

Urinary tract infections (UTIs) are the most common post-transplant infections [1] and the portal for upto 40% of post-transplant sepsis. [2] Previously thought to be benign, late post-transplant UTIs adversely impact patient survival, [3] reduce graft survival, [4] cause residual scarring and compensatory hyper-filtration and reactivate latent cytomegalovirus (CMV) infection. [1] A renal allograft recipient with multifocal osteomyelitis secondary to Escherichia coli urosepsis is discussed here.

  Case Report Top

P, a 25-year-old male with unknown native kidney disease, underwent renal transplantation from his haplomatched mother in June 1990. His initial immunosuppression was prednisolone and azathioprine, to which cyclosporine was added as rescue therapy following a steroid resistant acute vascular rejection in the 5 th month post-transplant, at which time serum creatinine was 2.6 mg/dl. Chronic rejection was confirmed on graft biopsy done in 1997, and by 1999, he had reached end stage kidney disease, was initiated on haemodialysis, and underwent a second renal transplant 8 months later, from his single antigen matched aunt at another center. Immunosuppression consisted of prednisolone, azathioprine and cyclosporine and his post-transplant period was uneventful until January 2005 when evaluation for nephrotic range proteinuria revealed mild graft hydronephrosis, which was not investigated further. There was no prior history of UTI or opportunistic infections.

In April 2005, he was treated with ofloxacin for 2 weeks, intravenous (IV) cefaperazone 1 g twice daily for 10 days and nitrofurantoin 100 mg thrice daily for 15 days for a relapsing E. coli UTI. In June 2005, when fever recurred, he came to our center. Blood and urine grew E. coli susceptible to carbapenems, nitrofurantoin and aminoglycosides, and he received imipenem for 2 weeks, resulting in sterile urine. A micturating cystourethrogram showed grade 4 vesico-ureteric reflux into the graft with mild hydronephrosis. He received antibiotic prophylaxis with nitrofurantoin and was planned for ureteric re-implantation if UTI recurred. Immunosuppression consisted of prednisolone 10 mg/D, azathioprine 125 mg/D and cyclosporine 50 mg twice daily (trough of 85 ng/ml). He discontinued prophylaxis after 6 months, but it was re-instated in May 2006, for asymptomatic bacteruria with E. coli susceptible to cefuroxime and nitrofurantoin.

In November 2006, he developed high grade fever lasting a month, which was empirically treated with cefepime, ampicillin and cloxacillin for 10 days without benefit and returned to our center with fever and pain over the right upper tibia. X-ray showed multiple lytic lesions in the tibial tuberosity consistent with acute osteomyelitis [Figure 1] and pus grew E. coli susceptible to imipenem and amikacin. As fungal, mycobacterial and anaerobic cultures of pus and blood and urine cultures were sterile, a diagnosis of primary osteomyelitis was made, surgical drainage was carried out and IV imipenem 1 g twice daily commenced. Although on imipenem, he developed left tibial osteomyelitis requiring surgical drainage. Bone scan showed no lesions elsewhere with no evidence of infective endocarditis on transthoracic and transesophageal echocardiography. He received a 2-month course of valgancyclovir for CMV viremia

(7961 copies/ml of blood) and azathioprine reduced to 50 mg/D.
Figure 1: X‑ray taken at the time of initial presentation in November 2006, showing lytic areas in the right upper tibia, consistent with acute osteomyelitis

Click here to view

As both legs continued to suppurate, he underwent bilateral surgical decompression and insertion of gentamicin beads into the right tibia in February 2007. By June 2007, despite 7 months of IV imipenem, osteomyelitis had progressed to involve the ankles, humeri, iliac bones, scapula, sternum, clavicles and both femurs [Figure 2]. Radical limb amputation was not considered due to the multifocal nature of the disease. Azathioprine was withdrawn and Imipenem continued. In October 2007, he underwent sequestrectomy, curettage and gentamicin bead insertion for persistent left tibial discharge. A second course of valganciclovir was given for CMV retinitis without CMV viremia, following which the lesions healed.
Figure 2: Technetium‑99 methylene diphosphonate bone scan image of the patient, showing increased tracer uptake in both tibiae, shaft of humerii, femorii, ankle joints, iliac bones, sternoclavicular joint, lateral end of clavicle and corocoid process of scapulae (June 2007)

Click here to view

Graft function steadily declined due to a combination of recurrent UTI, graft reflux, secondary glomerulosclerosis, compensatory hyperfiltration and chronic rejection secondary to suboptimal immunosuppression, and by January 2008, serum creatinine having increased to 4.5 mg/dl, immunosuppression was further reduced to prednisolone 5 mg daily and IV carbapenems discontinued after a graft biopsy revealed diffuse global glomerulosclerosis. Three months later, afebrile and asymptomatic for his bone lesions, he was initiated on maintenance hemodialysis, switched to continuous ambulatory peritoneal dialysis in October 2008 and had no recurrence of osteomyelitis after 5 years.

All E. coli isolates had similar disk diffusion readings and minimum inhibitory concentration breakpoints and were positive for extended-spectrum beta-lactamase production. The modified Hodge test for production of carbapenamase and blaKCP polymerase chain reaction for Klebsiella pneumoniae carbapenamase (courtesy Dr. Jean Patel, Antimicrobial Resistance Team, Centers for Disease Control and Prevention, Atlanta) were both negative.

  Discussion Top

The known risk factors for late post-transplant UTI include an abnormal urinary tract, diabetes mellitus, female gender and antirejection therapy. [5] E. coli is the most common uropathogen in the post-transplant setting; [5] uropathogenic strains have virulence factors such as adhesins and pili, which mediate binding and entry into urothelium, and fimbriae, which promote renal tropism and impair ureteric motility. [6],[7]

Recurrent and relapsing UTIs are a complement of both microbial virulence and defective host defense mechanisms and mandate evaluation of the urinary tract for prostatic enlargement or prostatitis, nephrolithiasis, voiding dysfunction and vesicoureteric strictures or reflux. [8] This patient had high grade reflux which, by causing distal tubular atrophy and impaired Tamm Horsfall protein secretion, promoted binding of bacterial adhesins to urothelium. The cumulative immunosuppression associated with a second transplant impaired local inflammatory responses and pro-apoptotic pathways that normally promote exfoliation and clearance of infected cells, thus creating a reservoir for recurrent infection. [7] Infection and inflammation promote CMV activation and replication through tumor necrosis factor-α release and in turn, CMV suppresses host defenses, predisposing to bacterial and fungal infections. [9] CMV infection, along with long standing nephrotic range proteinuria leading to loss of protective immunoglobulins, may have perpetuated both UTI and the osteomyelitic process in this patient.

Although osteomyelitis as a metastatic complication of E. coli infection has been reported in the general population, [10] non-tubercular osteomyelitis in renal allograft recipients is rare, having only been described with Rhodococcus equi, [11] Staphylococcus aureus[12] and Yersinia pseudotuberculosis. [13]

It is likely that E. coli metastasized to the bones during the first episode of urosepsis in April 2005, which was inadequately treated. Although the subsequent 2 week course of imipenem was sufficient to clear the urine of the organism, it was inadequate to eradicate bone foci. The discontinuation of suppressive therapy, which had hitherto delayed the overt clinical manifestation of osteomyelitis, favored infection recrudescence.

Osteomyelitis is characterized by intense inflammatory destruction of bony trabeculae as a result of the host immune response to seeded bacteria. A three phase technetium-99m methylene diphosphonate bone scan is both sensitive and specific (94% and 95% respectively) for the diagnosis of osteomyelitis in the absence of recent trauma or surgery. [14] Multifocal uptake on a bone scan is also seen with multifocal bone tumors (osteochondromas, osteosarcomas, histiocytosis X, fibrous dysplasia), bone lymphomas and bone metastasis; [15] however the history, examination findings and isolation of E. coli from repeated pus cultures, confirmed the diagnosis of multifocal osteomyelitis in this patient.

The release of cytokines and proteolytic enzymes by infiltrating leucocytes in osteomyelitis raises intra-osseous pressure leading to destruction of vascular channels and ischemic necrosis of bone and when chronic, separation of necrotic bone to form sequestrae, which continue to harbor bacteria. [16]

The avascularity of sequestrae limits antibiotic delivery and healing. [17] Positively charged antibiotics like gentamicin have better penetration into the glycosaminoglycan rich bone matrix compared to negatively charged beta lactams and neutral fluoroquinolones. [16] Therefore, local instillation of gentamicin impregnated beads is an effective therapeutic option for chronic osteomyelitis in renal allograft recipients, in whom systemic aminoglycosides may compromise graft function.

Finally, to preserve life, overwhelming or refractory infection requires reduction in immunosuppression, but may result in permanent graft dysfunction or worse, graft loss. This is a painful trade-off in developing countries with scarce financial resources, where few have access to transplantation as a mode of renal replacement therapy.

To conclude, UTI beyond 6 months of transplant is not a benign entity and requires prompt treatment with adequate and appropriate antibiotics, documentation of clearance after completing the antibiotic course and a diligent search for possible risk factors. Wherever indicated, a urological abnormality should be surgically corrected. Post-transplant urosepsis, if inadequately treated, can result in complications such as osteomyelitis, which requires prompt and adequate surgical drainage coupled with prolonged IV and if necessary, local antibiotic therapy. Immunosuppression reduction for refractory infection may result in permanent graft dysfunction.

  References Top

1.Tolkoff-Rubin NE, Rubin RH. Urinary tract infection in the immunecompromised host. Lessons from kidney transplantation and the AIDS epidemic. Infect Dis Clin North Am 1997;11:707-17.  Back to cited text no. 1
2.Wagener MM, Yu VL. Bacteremia in transplant recipients: A prospective study of demographics, etiologic agents, risk factors, and outcomes. Am J Infect Control 1992;20:239-47.  Back to cited text no. 2
3.Abbott KC, Swanson SJ, Richter ER, Bohen EM, Agodoa LY, Peters TG, et al. Late urinary tract infection after renal transplantation in the United States. Am J Kidney Dis 2004;44:353-62.  Back to cited text no. 3
4.Müller V, Becker G, Delfs M, Albrecht KH, Philipp T, Heemann U. Do urinary tract infections trigger chronic kidney transplant rejection in man? J Urol 1998;159:1826-9.  Back to cited text no. 4
5.Yacoub R, Akl NK. Urinary tract infections and asymptomatic bacteriuria in renal transplant recipients. J Glob Infect Dis 2011;3:383-9.  Back to cited text no. 5
6.Servin AL. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev 2005;18:264-92.  Back to cited text no. 6
7.Jorgensen I, Seed PC. How to make it in the urinary tract: A tutorial by Escherichia coli. PLoS Pathog 2012;8:e1002907.  Back to cited text no. 7
8.Muñoz P. Management of urinary tract infections and lymphocele in renal transplant recipients. Clin Infect Dis 2001;33 Suppl 1:S53-7.  Back to cited text no. 8
9.Reinke P, Prösch S, Kern F, Volk HD. Mechanisms of human cytomegalovirus (HCMV)(re) activation and its impact on organ transplant patients. Transpl Infect Dis 1999;1:157-64.  Back to cited text no. 9
10.Hamzaoui A, Salem R, Koubaa M, Zrig M, Mnif H, Abid A, et al. Escherichia coli osteomyelitis of the ischium in an adult. Orthop Traumatol Surg Res 2009;95:636-8.  Back to cited text no. 10
11.Novak RM, Polisky EL, Janda WM, Libertin CR. Osteomyelitis caused by Rhodococcus equi in a renal transplant recipient. Infection 1988;16:186-8.  Back to cited text no. 11
12.Polilli E, Ursini T, Mazzotta E, Sozio F, Savini V, D'Antonio D, et al. Successful salvage therapy with daptomycin for osteomyelitis caused by methicillin-resistant Staphylococcus aureus in a renal transplant recipient with Fabry-Anderson disease. Ann Clin Microbiol Antimicrob 2012;11:6.  Back to cited text no. 12
13.Van Zonneveld M, Droogh JM, Fieren MW, Gyssens IC, Van Gelder T, Weimar W. Yersinia pseudotuberculosis bacteraemia in a kidney transplant patient. Nephrol Dial Transplant 2002;17:2252-4.  Back to cited text no. 13
14.Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. Am J Roentgenol 1992;158:9-18.  Back to cited text no. 14
15.Assadi M, Nabipour I, Eftekhari M, Ebrahimi A, Abotorab SR, Salimipour H, et al. Diagnostic role of whole body bone scintigraphy in atypical skeletal tuberculosis resembling multiple metastases: A case report. J Med Case Rep 2009;3:141.  Back to cited text no. 15
16.Venugopalan V, Smith KM, Young MH. Selecting anti-infective agents for the treatment of bone infections. Orthopedics 2007;30:713-7.  Back to cited text no. 16
17.Lew DP, Waldvogel FA. Osteomyelitis. Lancet 2004;364:369-79.  Back to cited text no. 17


  [Figure 1], [Figure 2]

This article has been cited by
1 Disseminated osteomyelitis after urinary tract infection in immunocompetent adult: A case report
Young Jun Kim, Jae Hoon Lee
World Journal of Clinical Cases. 2020; 8(16): 3542
[Pubmed] | [DOI]


Print this article  Email this article


Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07