Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:729

Official publication of the Indian Society of Nephrology
 ~  Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~  Article in PDF (480 KB)
 ~  Citation Manager
 ~  Access Statistics
 ~  Reader Comments
 ~  Email Alert *
 ~  Add to My List *
* Registration required (free)  

   Mechanism of AKI...
   AKI and SARS-Cov...

 Article Access Statistics
    PDF Downloaded459    
    Comments [Add]    
    Cited by others 12    

Recommend this journal


  Table of Contents  
Year : 2020  |  Volume : 30  |  Issue : 3  |  Page : 161-165

COVID 19 and acute kidney injury

1 Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
2 Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
3 ,

Date of Submission25-Mar-2020
Date of Acceptance26-Mar-2020
Date of Web Publication13-May-2020

Correspondence Address:
Dr. Narayan Prasad
Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow . 226 014, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijn.IJN_120_20

Rights and Permissions


Coronavirus disease 19 (COVID-19) is caused by severe acute respiratory syndrome-corona virus (SARS-CoV-2), a beta coronavirus, mainly involves the respiratory tract, and the clinical features simulate to a severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) of the past. The genome of the SARS-CoV-2, isolated from a cluster-patient with a typical pneumonia after visiting Wuhan, had 89% nucleotide identitical with bat SARS-like-CoVZXC21 and 82% with that of human SARS-CoV. It enters the respiratory tract through angiotensin converting enzyme-2 (ACE2) receptors on alveoli. It may induce lung injury through direct cytopathic effect, involving effector T cells or causing sepsis and inducing cytokine storm.With a similar mechanism, it can cause acute kidney injury (AKI). The overall incidence of AKI is 5.1%, and AKI is an independent risk factor for mortality. The hazard ratio of death increases with the increasing severity of AKI. Management of COVID-19 with AKI is primarily supportive care, and at present, there are no evidence based effective antivirals for the treatment.

Keywords: Acute kidney injury, coronaviruses disease, COVID-19, outcomes, severe acute respiratory syndrome

How to cite this article:
Prasad N, Agrawal SK, On behalf of COVID-19 Working Group of Indian Society of Nephrology. COVID 19 and acute kidney injury. Indian J Nephrol 2020;30:161-5

How to cite this URL:
Prasad N, Agrawal SK, On behalf of COVID-19 Working Group of Indian Society of Nephrology. COVID 19 and acute kidney injury. Indian J Nephrol [serial online] 2020 [cited 2022 Nov 30];30:161-5. Available from:

  Introduction Top

Coronavirus disease-19 (COVID-19) is caused by a beta-coronavirus, which has been named as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) on February 11, 2020, by the International Committee on Taxonomy of viruses by the World Health Organisation (WHO).[1] It has been called SARS-Cov2 because the primary manifestations of the disease are severe respiratory tract involvement, similar to severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS).[2]

Worldwide situation

The recent outbreak of COVID-19, in December 2019 in Wuhan City, Hubei province of China, started with a cluster of pneumonia patients gradually gripping the world leading to declaration as a pandemic by WHO in March, 2020.[1],[3] As of the date on March 25, 2020, WHO reported a total of 3,75,498 confirmed cases, and 16,362 deaths from 196 countries.[4] After China, it spread to the United States, Europe, and Asia, and now increasinglycases are being reported from Europe and other parts of Asia outside China. A total of 1,990 confirmed cases with 65 deaths have been reported from the South-East Asia Region.

India specific situation

As of March 23, 2020,[5] the Indian Council of Medical Research data showed a total of 18,383 samples from 17,493 individuals had been tested, and 415 individuals were positive for SARS-CoV-2, and 7 deaths have been claimed because of COVID-19 infection. In an opinion by the Director of Center for Disease Dynamics, Economics and Policy (CDDEP), applying mathematical models used in the USA or the United Kingdom to India points to a possible 300 million (30 crore) cases in India, out of which 10 crores will face severe COVID infection,[6] if appropriate severe control measures are not taken. Looking at the incidence of 5.1% of AKI in severe cases,[7] there may be the potential of 5.1 million AKI patients because of COVID-19, and many of them may require renal replacement therapy (RRT). It is not surprising that if community spread happens in India, with limited resources and health infrastructure, it may be challenging to combat the situation of patients with multiorgan failure and AKI. However, India can handle the COVID-19, and its affects if the disease spreads over a long period of time.

Moreover, COVID-19 appears more contagious than SARS and MERS, spreads by human-to-human transmission via droplets infections and fomites. The incubation period ranges from 2 days to 2 weeks (usually 3 to 7 days).

  AKI and SARS-Cov-2:Clinical Manifestations Top

Though COVID-19 manifests primarily as diffuse alveolar damage, interstitial pneumonia, and acute respiratory failure, the involvement of other organs such as the kidney, heart, digestive tract, blood, and nervous system is potentially possible.[8],[9],[10] It has been reported that SARS-CoV and MERS-Co-V had infected more than 10,000 people in the past 2 decades, with mortality rates of 10% and 37%, respectively.[11],[12] In the previous reports of SARS and MERS-CoV infections, acute kidney injury (AKI) developed in 5% to 15% cases and carried a high (60%–90%) mortality rate.[13] A study reported that although AKI was uncommon in SARS but accounted for the fiercely high mortality of 91.7%, notably 33 out of 36 cases died.[14] Kidney involvement was a strong and independent predictor of mortality during the SARS and MERS outbreak, suggesting the similar situation for the kidney involvement with COVID-19 infection as well.

The incidence of AKI with COVID-19 has been reported varying from 3%–9%.[15],[16],[17],[18] A large prospective study has reported the overall incidence of 5.1%.[7] In a study of 59 COVID-19 patients with 28 severe cases and 3 deaths, Li et al.[19] found that 34% of patients had proteinuria on the first day of admission, and 63% developed proteinuria during the hospital stay. Nineteen percent of people showed an elevated level of serum creatinine. Blood urea nitrogen (BUN) was elevated in 27% patients andin two-thirds of patients who died. Each one of those (27/27) who had computerized tomography (CT) abdominal scan showed radiographic abnormalities of the kidneys with reduced density suggesting inflammation and edema. The study also emphasized that renal impairment may be an independent factor of mortality.

In another larger prospective study, Cheng Y et al.[7] reported 701 patients (median age 63 years with interquartile range, 50–71 years, and 367 males) admitted in a tertiary teaching hospital following the outbreak of COVID-19 in Wuhan city of China. A total of 113 (16.1%) died in the hospital, and the median time to death was 6 days (IQR 3–12) days. On admission, 43.9% of patients had proteinuria, and 26.7% had hematuria. The prevalence of elevated serum creatinine, elevated BUN, and estimated glomerular filtration (eGFR) under 60 ml/min/1.73m2 were 14.4%, 13.1% and 13.1%, respectively. Overall, AKI was reported in 5.1% of patients. Patients with kidney disease had a significantly higher risk of in-hospital death. Cox proportional hazard regression confirmed that elevated baseline BUN (3.97, 2.57–6.14), and elevated baseline serum creatinine (hazard ratio: 2.10, 95% CI: 1.36–3.26) was an independent predictor of mortality. It has also been observed that the hazard ratio for mortality also increases with the staging of AKI from 1.9 in stage 1, 3.51 in stage 2, and 4.38 in stage 3 AKI. The hazard ratio of mortality also increased with the degree of proteinuria and hematuria. These factors remain significant factors for in-hospital death after adjusting for age, sex, disease severity, comorbidity, and leukocyte count. The incidence of in-hospital mortality in patients with elevated baseline serum creatinine was 33.7%, significantly higher than patients with normal baseline serum creatinine (13.2%). However, the major limitation of the study was that base line coexisting chronic kidney disease (CKD) could not be assessed.

  Mechanism of AKI With Covid-19 Top

The mechanism of kidney involvement is at present speculative and appears multifactorial. The susceptible host, particularly elderly and people with underlying diseases like hypertension, cardiac diseases, bronchial asthma, diabetes, etc., are at a risk of severe disease. Like any other viral infection causing kidney injury, the direct viral cytopathic effect on kidney is a postulated mechanism. The virus does not show any evidence of renal tropism. The viral nucleic acid material of CoV in blood and urine in SARS-CoV infection as well as in COVID-19 patients, supports this hypothesis.[20],[21] Recently, SARS-CoV-2 from the urine sample of an infected patient has been isolated, suggesting the kidney as the target of this novel coronavirus.[22]

The molecular study showed SARS CoV-2 uses angiotensin-converting enzyme 2 (ACE2) receptor for cell entry like SARS-CoV. ACE2 and dipeptidyl peptidase-4 (DPP4), both expressed on renal tubular cells, were identified as binding partners for SARS-CoV and MERS-CoV, respectively.[23],[24] ACE2 expression is 100-fold higher in kidney tissues than the lung.[19] However, still clinical observation is different that there is more severe lung injury than kidneys in SARS and SARS-CoV-2 as well.

The normal glomerular pathology on microscopy and the absence of electron-dense deposit on ultrastructure microscopy in SARS-CoV patients, do not support the hypothesis of the immune complex-mediated glomerular injury though direct effector T cell-mediated injury could be another postulated mechanism.[14] Another important mechanism appears to be virus-induced sepsis and the release of cytokines in circulation leading to severe inflammatory response, hypotension, hypoxia, shock, and the aggrevation of target organ injuries, including kidneys as well. The clinical pictures of patients with COVID-19 with sepsis supports this hypothesis.

Most of the patients had mild symptoms with fever, sneezing, cough, sputum, and dyspnea, which indicate severe lower respiratory tract injury. The manifestations with severe COVID-19 are multi organ involvement, which includes respiratory events such as severe dyspnea and hypoxemia, renal impairment with reduced urine output, tachycardia, altered mental status, and functional alterations of other organs. The functional changes were expressed as the laboratory data of hyperbilirubinemia, acidosis, high lactate, coagulopathy, and thrombocytopenia. These patients may require intensive care unit treatment. Huang et al.[21] revealed that all of their 41 patients in the study had pneumonia with bilateral lobular and sub segmental consolidation on CT, and 32% of them required intensive care. The patients requiring intensive care had higher plasma cytokine levels of (interleukin [IL]-2, IL-7, IL-10, granulocyte-colony stimulating factor, interferon-inducing protein-10, monocyte chemoattractant protein 1, macrophage inflammatory protein-1a, and tumor necrosis factor α) on admission. These findings suggest that some of them may benefit from the removal of cytokines during continuous renal replacement therapy (CRRT).

Diagnosis of AKI

The diagnostic criteria and AKI staging is not different than AKI in other situations.[25] The diagnosis of COVIT-19 itself is based on the history of contact, clinical and laboratory evidence with hemogram, biochemical parameters, chest imaging with CT and virological examination.[26] The confirmation of the diagnosis requires a nucleic acid amplification test with reverse transcriptase polymerase chain reaction (RT-PCR) and other techniques. Many in-house and commercial available nucleic acid detection assays for COVID-19 are available.[26] Next-generation gene sequencing can also be used. WHO appointed many referral laboratories in different countries.[27] A serological test has also been developed and allowed the detection of a cluster of cases in Singapore.[28]

  Treatment Top

At present, the management strategies of COVID-19 with AKI is primarily conservative in the form of good hydration, nutritional support, paracetamol for fever, headaches and body aches, and antibiotics in the case of secondary bacterial infection only, with aiming for the self-recovery. Along with patient treatment, spread to others also should be given importance. The patient with respiratory distress may require oxygen therapy and intensive care with ventilatory support in the case of acute respiratory distress syndrome. All confirmed COVID-19 patients need to be isolated. An N95 fit-tested respirator and protective clothing and equipment are essential for patients, and the caregivers should also use appropriate approved personal protective equipments (PPEs).

There is no evidence-based effective antiviral therapy available. In a prospective study of AKI with COVID-19, the three most used medicines were antivirals (73.0%), antibiotics (71.0%), and glucocorticoid (36.9%). Antivirals showed mortality benefit, and the glucocorticoids did not, which is possible because clinicians have used steroids mainly in the terminally sick patients. The varieties of anti virals were used, including arbidolhydrochloride, ganciclovir, interferon, lopinavir and ritonavir, oseltamivir, and ribavirin. However, there was no significant difference on AKI with these therapies.[7]

The most recent New England Journal of Medicine (NEJM) study of a randomized controlled trial[29] showed no mortality benefit of treatment with lopinavir-ritonavir combination (19.2%) as compared to the standard of care arm (25%). The median time of clinical improvement was only one day shorter in the treatment arm. Lopinavir-ritonavir treatment was stopped early in 13.8% because of adverse events. With some success story with remdesivir in COVID-19 treatment, a clinical trial is currently going on.[30] Chloroquine phosphate showed some efficacy against COVID-19 associated pneumonia in a multicentre clinical trial conducted in China.[31] The National Taskforce for COVID-19 by the ICMR recommended the use of hydroxy-chloroquine for prophylaxis of SARS-CoV-2 infection for healthcare workers involved in the care of suspected or confirmed cases of COVID-19 in a dose of 400 mg twice a day on Day 1, followed by 400 mg once weekly for next seven weeks; and for household contacts of laboratory-confirmed cases in the dose of 400 mg twice a day on Day 1, followed by 400 mg once weekly for next three weeks; to be taken with meals. The warning with this advisory also mentioned that the health care workers should not have a false sense of security with this chemoprophylaxis and other preventive measures should remain continued.[32],[33]

Few retrospective analyses showed benefit with the use of glucocorticoids in SARS-CoV infection. [34,35] Metanalysis on the use of glucocorticoids in previous SARS-CoV infection do not support the use of glucocorticoids in COVID-19 as well. In a meta-analysis of corticosteroid use in patients with SARS, four studies showed harm with higher psychosis, diabetes, avascular necrosis, and delayed viral clearance.[36] WHO does not recommend the use of steroid expecting potential inhibition of viral clearance and prolongation of the duration of viremia.[37]

Experimental strategies

The use of convalescent plasma showed speedy clinical recovery in some patients with COVID-19 in China.[21] Two trials, an open-label, non-randomized clinical trial (NCT04264858) and another multicentre, randomized, and parallel-controlled trial (ChiCTR2000029757) on the efficacy of convalescent plasma in patients with COVID-19, are awaiting results.

In the modern era of monoclonal antibodies directed therapy, the researchers showed encouraging results with the use of monoclonal antibodies in the treatment of SARS infection as well. An in-vitro study showed neutralizing activity in an assay with a monoclonal antibody directed against the Ras-binding domain of the S- protein of Middle East respiratory syndrome coronavirus (MERS-CoV). However, no such evidence is available against COVID-19.

Inflammatory cytokines levels were extremely high in critically sick patients with infection.[21] Tocilizumab, a monoclonal antibody against the IL-6 receptor, may be of benefit; however, its use in treatment requires more evidence. The safety and efficacy of tocilizumab in COVID-19 infection are also under clinical trial (ChiCTR2000029765).

Extracorporeal therapy

The indication of dialysis remains standard as for any other AKI patients. CRRT, with high volume hemofiltration that will be capable of removing inflammatory cytokines, appears theoretically advantageous. CRRT was successfully used in the treatment of SARS, MERS, and sepsis in the past.[14],[38] A study showed significant improvement in the Sequential Organ Failure Assessment scores at day 7 in patients with sepsis treated with high-volume hemofiltration and removal of IL-6.[39]

In summary, COVID-19 infection may involve kidneys besides the respiratory tract leading to proteinuria, hematuria, and AKI. AKI is an independent risk factor for mortality. With the increasing stage and severity of AKI, the hazard ratio of death of patients with COVID-19 also increases. The management strategies applied for AKI in COVID-19 are supportive only. COVID-19 patients need to be isolated to prevent the spread of infection.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

World Health Organization. Director-General's remarks at the media briefing on 2019-nCoV on February 11 2020. Available from: [Last accessed on 2020 Feb 12].  Back to cited text no. 1
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2018;23:130-7.  Back to cited text no. 2
WHO. Coronavirus disease (COVID-2019) situation reports. 2020. Available from: [Last accessed on 2020 Mar 05].  Back to cited text no. 3
WHO. Coronavirus disease (COVID-2019) situation reports. 2020. Available from: [Last accessed on 2020 Mar 23].  Back to cited text no. 4
Indian Council of Medical Research Update: COVID-19 (23/03/2020 10:00 AM). [Last accessed on 2020 Mar 23].  Back to cited text no. 5
Ramanan Laxminarayan, director of the Center for Disease Dynamics, Economics and Policy (CDDEP) a public health research group based in Washington D.C. and New Delhi. Available from: [Last accessed on 2020 Mar 20].  Back to cited text no. 6
Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int2020. doi: 10.1016/j.kint. 2020.03.005.  Back to cited text no. 7
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265-9.  Back to cited text no. 8
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14:523-34.  Back to cited text no. 9
Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019;11:E59.  Back to cited text no. 10
World Health Organization. Summary of probable SARS cases with onset of illness from November 1 2002 to July 31 2003. Available from:[table 2004]_04_21/en/. [Last accessed on 2020 Mar 23].  Back to cited text no. 11
World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). November 2019. Available from: [Last accessed on 2020 Mar 22].  Back to cited text no. 12
Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int. doi: 10.1016/j.kint. 2020.03.001.  Back to cited text no. 13
Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF,et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int 2005;67:698-705.  Back to cited text no. 14
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020. doi: 10.1001/jama. 2020.1585. [Last accessed on 2020 Mar 02].  Back to cited text no. 15
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y,et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020;395:507-13.  Back to cited text no. 16
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX,et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of 2019 novel coronavirus infection in China [e-pub ahead of print].N Engl J Med 2020. doi: 10.1056/NEJ Moa 2002032. [Last accessed 2020 Mar 02].  Back to cited text no. 17
Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L,et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. med Rxiv 2020.02.18.20023242. doi: 10.1101/2020.02.18.20023242. [Last accessed on 2020 Mar 02].  Back to cited text no. 18
Li Z, Wu M, Guo J, Yao J, Liao X, Song S,et al. Caution on kidney dysfunctions of 2019-nCoV patients. 2020. medRxiv 2020.02.08.20021212. Available from:  Back to cited text no. 19
Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IF, Poon LL,et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003;361:1767-72.  Back to cited text no. 20
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.  Back to cited text no. 21
Zhang L, Shen FM, Chen F, Lin Z. Origin and evolution of the 2019 novelcoronavirus. Clin Infect Dis 2020. doi: 10.1093/cid/ciaa112. [Epubahead of print].  Back to cited text no. 22
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA,et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-4.  Back to cited text no. 23
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R,et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus EMC. Nature 2013;495:251-4.  Back to cited text no. 24
Section 2: AKI Definition. Kidney Int Suppl (2011) 2012;2:19-36.  Back to cited text no. 25
Ling L, Taisheng L. The National Health Commission of PRC Guideline for diagnosis and treatment of novel coronavirus disease (version 6). Natl Med J China 2020;100:E001.  Back to cited text no. 26
World Health Organization. Specimen referral for 2019nCoV-operational details of referral laboratories. Available from: and equals; c3fa3ec3_4a. [Last accessed on 2020 Mar 02].  Back to cited text no. 27
Normile, D. Singapore claims first use of antibody test to track coronavirus infections. Available from: [Last accessed on 2020 Mar 02].  Back to cited text no. 28
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G,et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020. doi: 10.1056/NEJMoa2001282.  Back to cited text no. 29
NIH clinical trial of remdesivir to treat COVID-19 begins. Available from: [Last accessed on 2020 Mar 23].  Back to cited text no. 30
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020;14:72-3.  Back to cited text no. 31
National Taskforce for COVID-19. Available from: [Last accessed on 2020 Mar 24].  Back to cited text no. 32
Ministry of Health and Family Welfare. Available from: chloroquina sprophylaxisforSARSCoV2 infection.pdf. [Last accessed on 2019 Mar 24].  Back to cited text no. 33
Chen RC, Tang XP, Tan SY, Liang BL, Wan ZY, Fang JQ,et al. Treatment of severe acute respiratory syndrome with glucosteroids: The Guangzhou experience. Chest 2006;129:1441-52.  Back to cited text no. 34
Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA,et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir Crit Care Med 2018;197:757-67.  Back to cited text no. 35
Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med 2006;3:e343.  Back to cited text no. 36
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473-5.  Back to cited text no. 37
Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A,et al. Clinical course andoutcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann InternMed 2014;160:389-97.  Back to cited text no. 38
Ghani RA, Zainudin S, Ctkong N, Rahman AF, Wafa SR, Mohamad M,et al. Serum IL-6 andIL-1-ra with sequential organ failure assessment scoresin septic patients receiving high-volume haemofiltration and continuous venovenoushaemofiltration. Nephrology (Carlton) 2006;11:386-93.  Back to cited text no. 39

This article has been cited by
1 Direct, indirect, post-infection damages induced by coronavirus in the human body: an overview
Sivan Padma Priya, P. M. Sunil, Sudhir Varma, Carel Brigi, Mohammad Faruq Abd Rachman Isnadi, J. A. Jayalal, R. Arunkumar Shadamarshan, S. Suresh Kumar, Neela Vasantha Kumari, Rishi P. R. Kumar
VirusDisease. 2022;
[Pubmed] | [DOI]
2 Evolving Risk of Acute Kidney Injury in COVID-19 Hospitalized Patients: A Single Center Retrospective Study
Fahad D. Algahtani, Mohamed T. Elabbasy, Fares Alshammari, Amira Atta, Ayman M. El-Fateh, Mohamed E. Ghoniem
Medicina. 2022; 58(3): 443
[Pubmed] | [DOI]
3 A Novel Association Between Coronavirus Disease 2019 and Normocomplementemic Rapidly Progressive Glomerulonephritis-Crescentic Immunoglobulin A Nephropathy: A Report of Two Pediatric Cases
Vivekanand N, R. K. Naresh Singh, Neha Kumari, Raksha Ranjan, Sandeep Saini
Cureus. 2022;
[Pubmed] | [DOI]
4 Potential Association of Hypernatremia With Mortality in Patients With Acute Kidney Injury and COVID-19
Mahendra Atlani, Ashok Kumar, Abhijit P Pakhare, Abhishek Singhai, Ramesh Gadwala
Cureus. 2022;
[Pubmed] | [DOI]
5 Coronavirus disease 2019-associated acute kidney injury garners more attention
Meihua Yan, Wenquan Niu, Ping Li
Integrative Medicine in Nephrology and Andrology. 2021; 8(1): 9
[Pubmed] | [DOI]
6 Myeloma Cast Nephropathy and COVID-19: A Case Report of Multiple Myeloma Presenting as Acute Kidney Injury in the Setting of COVID-19
Waqas Memon, Karishma Popli, Ayesha Akram, Sindhura Bobba, Selvaraj Muthusamy
Cureus. 2021;
[Pubmed] | [DOI]
7 Renal involvement in COVID-19: focus on kidney transplant sector
Caterina Sagnelli, Antonello Sica, Monica Gallo, Gaia Peluso, Filippo Varlese, Vincenzo D’Alessandro, Massimo Ciccozzi, Felice Crocetto, Carlo Garofalo, Alfonso Fiorelli, Gabriella Iannuzzo, Alfonso Reginelli, Fabrizo Schonauer, Michele Santangelo, Evangelista Sagnelli, Massimiliano Creta, Armando Calogero
Infection. 2021; 49(6): 1265
[Pubmed] | [DOI]
8 COVID-19 impact on the renal system: Pathophysiology and clinical outcomes
Alan D. Kaye, Chikezie N. Okeagu, Gregory Tortorich, Alex D. Pham, Eric I. Ly, Kimberley C. Brondeel, Matthew R. Eng, Markus M. Luedi, Richard D. Urman, Elyse M. Cornett
Best Practice & Research Clinical Anaesthesiology. 2021; 35(3): 449
[Pubmed] | [DOI]
9 Outcomes of symptomatic coronavirus disease 19 in maintenance hemodialysis patient in India
Narayan Prasad, Manas Ranjan Behera, Mansi Bhatt, Sanjay Kumar Agarwal, N. Gopalakrishnan, Edwin Fernando, Arpita Roy Chaudhary, Manisha Sahay, Shivendra Singh, Apoorva Jain, Shruti Tapiawala, Aniket Kamble, Umesh Khanna, Rubina Bohra, Anurag Gupta, Urmila Anandh, Vivekanand Jha
Seminars in Dialysis. 2021; 34(5): 360
[Pubmed] | [DOI]
10 Pulmonary Embolism Response Team utilization during the COVID-19 pandemic
Matthew T Finn, Shawn Gogia, Joseph J Ingrassia, Matthew Cohen, Mahesh V Madhavan, Shayan Nabavi Nouri, Yevgeniy Brailovsky, Amir Masoumi, Justin A Fried, Nir Uriel, Cara I Agerstrand, Andrew Eisenberger, Andrew J Einstein, Daniel Brodie, Erika B Rosenzweig, Martin B Leon, Koji Takeda, Anthony Pucillo, Philip Green, Ajay J Kirtane, Sahil A Parikh, Sanjum S Sethi
Vascular Medicine. 2021; 26(4): 426
[Pubmed] | [DOI]
11 The Spectrum of Neuroimaging Findings on CT and MRI in Adults With COVID-19
Gul Moonis, Christopher G. Filippi, Claudia F. E. Kirsch, Suyash Mohan, Evan G. Stein, Joshua A. Hirsch, Amit Mahajan
American Journal of Roentgenology. 2021; 217(4): 959
[Pubmed] | [DOI]
12 Body Localization of ACE-2: On the Trail of the Keyhole of SARS-CoV-2
Francesca Salamanna, Melania Maglio, Maria Paola Landini, Milena Fini
Frontiers in Medicine. 2020; 7
[Pubmed] | [DOI]


Print this article  Email this article


© Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07