Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:607

Official publication of the Indian Society of Nephrology
 ~  Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~  Article in PDF (566 KB)
 ~  Citation Manager
 ~  Access Statistics
 ~  Reader Comments
 ~  Email Alert *
 ~  Add to My List *
* Registration required (free)  

   Article Tables

 Article Access Statistics
    PDF Downloaded187    
    Comments [Add]    

Recommend this journal


  Table of Contents  
Year : 2021  |  Volume : 31  |  Issue : 6  |  Page : 587-591

Successful treatment of severe heart failure in advanced diabetic kidney disease using angiotensin–neprilysin inhibitors (sacubitril/valsartan) – report of two cases with review of options in literature

1 Department of Nephrology, Virinchi Hospital, Banjara Hills, Hyderabad, Telangana, India
2 Department of Cardiology, Virinchi Hospital, Banjara Hills, Hyderabad, Telangana, India

Date of Submission22-Jun-2020
Date of Acceptance04-Sep-2020
Date of Web Publication13-Nov-2021

Correspondence Address:
Ratan Jha
Department of Nephrology, Virinchi HospitaL, Road No. 1, Banjara Hills, Hyderabad - 500 034, Telangana
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijn.IJN_298_20

Rights and Permissions


Patients with heart failure (HF) and advanced chronic kidney disease (CKD) constitute a special population that experience poor outcomes due to poor adherence to established therapies because of potential safety concerns. Role of newer agents like angiotensin–receptor neprilysin inhibitors (ARNI) in early stages of CKD is well elucidated. We report two cases of HF with reduced ejection fraction, who received ARNI in advanced stage of CKD (stage 5) and achieved remarkable outcomes in terms of quality of life and longevity.

Keywords: Advanced chronic kidney disease, ARNI, heart failure

How to cite this article:
Jha R, Mukku KK, Rakesh AK, Sinha S. Successful treatment of severe heart failure in advanced diabetic kidney disease using angiotensin–neprilysin inhibitors (sacubitril/valsartan) – report of two cases with review of options in literature. Indian J Nephrol 2021;31:587-91

How to cite this URL:
Jha R, Mukku KK, Rakesh AK, Sinha S. Successful treatment of severe heart failure in advanced diabetic kidney disease using angiotensin–neprilysin inhibitors (sacubitril/valsartan) – report of two cases with review of options in literature. Indian J Nephrol [serial online] 2021 [cited 2022 Aug 13];31:587-91. Available from:

  Introduction Top

The heart and kidney interact in a complex and bidirectional manner. Heart failure (HF) is one of the leading causes of emergency department visits and hospitalizations in patients with advanced stages of chronic kidney disease (CKD), more so in dialysis patients.[1] There is paucity of data on the efficacy and safety of established treatments of HF among advanced CKD population because such patients are excluded in the majority of clinical trials. Clinicians often get dissuaded from initiating standard therapy resulting in poorer outcomes. Synergistic collaboration of nephrologists and cardiologists may aid in implementing guidelines-directed strategy to improve patient outcomes. We report our experience of two such cases with follow-up observation, where the appropriate use of angiotensin receptor – neprilysin inhibitor (ARNI) (sacubitril/valsartan) in advanced CKD resulted in good quality of life and avoidance of recurrent hospitalization.

Case 1

A 59-year-old male patient was referred by a cardiologist to CKD clinic for cardio-renal syndrome (CRS) type 2 [Table 1]. He was initiated on sacubitril/valsartan earlier but had to be withdrawn due to hyperkalemia. He was started on peritoneal dialysis (PD) via Tenckhoff catheter with 1 exchange of 2L 2.5% dextrose per day which yielded a UF of 400–600 mL in 4 hours. He was restarted on sacubitril/valsartan with a low dose of 100 mg/day and was titrated up to 200 mg/day, which was well tolerated. He was continued on torsemide and metolazone, and eplerenone was withheld with appropriate dietary restriction for potassium. At 12 months of follow up, he did not require any hospitalization or develop hyperkalemia (potassium monitoring done weekly for 1 month and then monthly). His renal and cardiac function (LV EF) remained stable without further deterioration. His NT pro BNP and Trop I were always high at all evaluations [Table 1]. His quality of life improved significantly in the form of improvement in NYHA class 4 to class 2, weight gain of 5 kg and confidence of self-care. After 1 year, he defaulted on ARNI therapy and presented with HF as he sustained acute coronary syndrome (ACS). He underwent revascularization by CABG and mitral repair. He expired during the same admission due to sepsis.
Table 1: Clinical characteristics

Click here to view

Case 2

A 52-year-old male patient was referred by a cardiologist for CRS type 2 [Table 1] with orthopnoea due to pulmonary edema (LV EF 38%/40%). He was stabilized with two sessions of hemodialysis (HD) and then started on Sacubitril/Valsartan 100 mg/day, which was titrated to 200 mg/day and diuretics (potassium monitoring done weekly for 1 month and then monthly) with dietary restriction for potassium. His clinical condition improved and had functional status of class 3 NYHA. He did not need any hospitalization for next 2 years and LV EF remained stable at 42%. His renal function was also stable with change in eGFR from 13 to 10 mL/min/1.73m2. He had a weight gain of 20 kg (BMI-43) during this period with worsening obstructive sleep apnoea (OSA). He was readmitted after 2 years with NYHA class 4 breathlessness and found to have serum creatinine of 8.8 mg/dL, serum potassium of 3.9mEq/L, high NTproBNP, and TropI [Table 1]. He was also diagnosed to have hypothyroidism (TSH-133 micro iu/l) possibly related to amiodarone use. His 2D echo showed stable LV EF of 42% with regional wall motion abnormality. He was initiated on HD and later was shifted to single exchange of PD after treatment of anemia, hypothyroidism and OSA.

  Discussion Top

Patients with CKD are at increased risk of cardiovascular disease and often present with HF (two to three times higher risk, incidence around 15% in late stage).[1],[2] The risk of HF increases with worsening proteinuria and declining GFR independently.[3] Conversely, patients with HF frequently have reduced kidney function (approx. 40%).[4] Regardless of whether HF begets CKD or vice versa or both developing and progressing simultaneously, prognosis of patient with HF and CKD stage 4–5 is poor[5]. It is estimated that the survival rates in CKD stages 4–5 with HF are below 40% at second year[4],[5] and are far worse in a small subset of CKD population with heart failure with reduced ejection fraction (HFrEF).

HF in CKD is often underdiagnosed and could be confused with fluid overload, anemic symptoms, or uremic manifestation as there is lot of overlap in symptoms. To compound the problem, around 50–75% of CKD patients have structural heart disease as LVH on 2D echo, which may or may not be related to symptoms of dyspnea. Biomarkers like N terminal brain natriuretic peptide (NT-BNP) and Troponin I are more prognostic than diagnostic though serum ST2 could be a tool to assess HF better in CKD.[1]

Treatment for HF in CKD is based on two broad principles: (i) to target pathophysiological links between CKD and HF to prevent HF and (ii) to improve overall prognosis in established HF.[6] The main objectives of HF therapy in CKD (as well as in non-CKD) patients are to decrease the preload and after load and to reduce LVH, treat myocardial ischemia, and inhibit neurohumoral hyperactivity, especially the sympathetic nervous system and RAS (renin angiotensin system). The anatomical substrates of HF (LVH, vascular calcification, etc.) develop early in CKD and strategies to prevent it have not been rigorously tested in the CKD populations. RAS inhibition is the cornerstone of HFrEF treatment. The fear of deterioration of renal function and hyperkalemia results in reluctance to contemplate its use in advanced CKD among physicians, cardiologists, and even nephrologists and is often associated with treatment discontinuation of RAS inhibition. This decision to discontinue RAS blockade is especially disadvantageous in HFrEF patients with CKD, who are at particularly high risk of adverse cardiac and renal outcomes. These patients also have the greatest absolute risk reduction with RAS inhibition. [7],[8] A trend of stable serum creatinine is a far better predictor of a good outcome than a single value even if there is initial rise of serum creatinine not exceeding 20% from baseline.

Neprilysin inhibition with ARNI is the most recent treatment that plays a key role in not only improving outcomes in HF but also favorably impacting CKD progression[9],[10] Switching therapy in an eligible HFrEF patient from a RAS-blocker to ARNI has been reported to induce beneficial reverse remodeling of metrics of systolic and diastolic function (rise of EF 10%) and renal function stabilization (reversal of type 2 CRS), which makes it the most preferred drug in this setting. Even overtly proteinuric CKD patients on neprilysin inhibition had reduced cardiac biomarkers levels more than in patients on irbesartan.[11] Experiments using 5/6 nephrectomy models suggested that NEPI reduces proteinuria and histological markers of kidney damage more than ACE inhibition alone.[12] ARNI has additional BP lowering properties, which is a common problem in CKD population and may play a role in reducing the progression of CKD. Hence, ARNI is not only cardioprotective but also renoprotective.

The pathophysiologic mechanisms responsible for benefits of ARNI remain unclear. The benefit analysis of ARNI is done at three spheres: effect on biomarkers, cardiac reverse remodeling, and effect on functional capacity. Neprilysin inhibition enhances circulating levels of biologically active natriuretic peptides and other vasoactive peptides that may have favorable vasodilatory, antifibrotic, and antihypertrophic effects. Favorable effects of neprilysin inhibition are also due to improvement in myocardial remodeling (assessed by focused echocardiographic end points like left ventricular end-diastolic and end-systolic volumes, left atrial volume, mitral E/e′ ratio) and wall stress though one may fail to demonstrate significant difference in contractile properties as assessed (left ventricular ejection fraction and global longitudinal strain) or ventricular–vascular coupling (Ea/Ees ratio) as was the case in our patients.[13]

It is well known fact that one-third of HF patients die within 1 year after diagnosis with greatest risk of mortality in first three months.[14] Similarly, nearly 30% patients of HF patients need hospital readmission in 1 year. Such high mortality and readmission rates are favorably influenced by goal directed therapy with use of ARNI.[8] ARNI minimizes functional deterioration and positively impacts NYHA functional class.

As majority of patients in late stages of CKD are resistant to diuretics for volume control, fluid removal is better achieved with either HD or PD.[15] Patients in this advanced stage of CKD benefit more with frequent dialysis (slow long nocturnal HD) or PD for mitigating HF. Several studies have shown that PD in HF significantly improves NYHA Class and reduces the number of days hospitalized for HF.[16] Myocardial stunning during HD as assessed by cardiac PET scans is linked to further decline in LVEF of almost 10% a year increasing risk of CV death further. Ultrafiltration by PD in this context is found to be safer. Patients with HF tend to do better with PD compared to HD in long term. Such approach can be utilized to supplement slow ultrafiltration, prevention of hyperkalemia, improving or stabilizing LV function, and preserving residual renal function.

Usage of ARNI is promoted as a grade 1a recommendation in recent guidelines for treating HFrEF among patients with eGFR >30 ml/min.[8],[9],[17] It is suggested in advanced kidney disease to initiate with low dose (50 mg twice) and titrate up to 100 mg twice daily in the maintenance phase, though one may use even 200 mg twice daily if tolerated.[18] We noted similar results in both our patients who were at highest risk for death and hospitalization due to diabetic status, triple vessel disease, reduced EF, and advanced CKD. ARNI positively impacted the quality of life in both of our patients (first returned to his outdoor business activity and the second was independent for his daily self-care.

  Conclusion Top

HF with CKD is riddled with diagnostic dilemmas and poses multidimensional challenges like hyperkalemia, deterioration of renal function, and diuretic resistance. Multipronged strategy including PD, newer agents for potassium control like patiromer or sodium zirconium silicate may allow the use of agents like RAS inhibitors, ARNI, MRA (mineralocorticoid receptor antagonist) in these patients. ARNI looks promising as a treatment option that could reduce the risk of HF safely even among patients with CKD stage V. Our limitation is to draw inference from only these two well-followed patients. However, the utility of such therapy has to be scrutinized carefully by real world experience involving a sizeable number of patients in a multicentric-pooled data having long-term follow-up for reliable assessment of such therapeutic intervention. Our report suggests that one should not deprive these high-risk patients the benefits of ARNI by contemplating its use even in late stages of advanced CKD with close monitoring.


We thank our colleagues and staff of Nephrology and cardiology.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Tuegel C , Bansal N. Heart failure in patients with kidney disease. Heart 2017;103:1848-53.  Back to cited text no. 1
Stevens LA, Li S, Wang C, Huang C, Becker BN, Bomback AS, et al. Prevalence of CKD and comorbid illness in elderly patients in the United States: Results from the kidney early evaluation program (KEEP). Am J Kidney Dis 2010;55(3 Suppl 2):S23-33.  Back to cited text no. 2
Waheed S, Matsushita K, Sang Y, Hoogeveen R, Ballantyne C, Coresh J, et al. Combined association of albuminuria and cystatin C-based estimated GFR with mortality, coronary heart disease, and heart failure outcomes: The atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis2012;60:207-16.  Back to cited text no. 3
Saran R, Robinson B, Abbott KC, Agodoa LY, Albertus P, Ayanian J, et al. US Renal Data System 2016 Annual Data Report: Epidemiology of kidney disease in the United States. Am J Kidney Dis 2017;69(Suppl 1):S1-688.  Back to cited text no. 4
House AA. Management of heart failure in advancing CKD: Core curriculum 2018. Am J Kidney Dis 2018;72:284-95.  Back to cited text no. 5
Haynes R, Zhu D, Judge PK, Herrington WG, Kalra PA, Baigent C.Chronic kidney disease, heart failure and neprilysin inhibition. Nephrol Dial Transplant 2020;35:558-64.  Back to cited text no. 6
Clark H, Krum H, Hopper I. Worsening renal function during renin-angiotensin-aldosterone system inhibitor initiation and long-term outcomes in patients with left ventricular systolic dysfunction. Eur J Heart Fail 2014;16:41-8.  Back to cited text no. 7
Chang HY, Feng AN, Fong MC, Hsueh CW, Lai WT, Huang KC, et al. Sacubitril/valsartan in heart failure with reduced ejection fraction patients: Real world experience on advanced chronic kidney disease, hypotension, and dose escalation.J Cardiol 2019;74:372-80.  Back to cited text no. 8
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysininhibition versus enalapril in heart failure. N Engl J Med2014;371:993-1004.  Back to cited text no. 9
Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019;381:1609-20.  Back to cited text no. 10
Randomized multicentre pilot study of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease: United Kingdom Heart and Renal Protection (HARP)- III-rationale, trial design and baseline data.Nephrol Dial Transplant 2017;32:2043-51.  Back to cited text no. 11
Taal MW, Nenov VD, Wong W, Satyal SR, Sakharova O, Choi JH, et al. Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme inhibition alone.J Am Soc Nephrol 2001;12:2051-9.  Back to cited text no. 12
Desai AS, Solomon SD, Shah AM, Claggett BL, Fang JC, Izzo J, et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: A randomized clinical trial. JAMA 2019;322:1077-84.  Back to cited text no. 13
Harikrishnan S, Sanjay G, Agarwal A, Kumar NP, Kumar KK, Bahuleyan CG, et al. One-year mortality outcomes and hospital readmissions of patients admitted with acute heart failure: Data from the Trivandrum Heart Failure Registry in Kerala, India.Am Heart J 2017;189:193-9.  Back to cited text no. 14
Rangaswami J, McCullough PA. Heart failure in End-Stage Kidney Disease: Pathophysiology, diagnosis, and therapeutic strategies. Semin Nephrol 2018;38:600-7.  Back to cited text no. 15
Grossekettler L, Schmack B, Brockmann C, Wanninger R, Kreusser MM, Frankenstein L, et al. Benefits of peritoneal ultrafiltration in HFpEF and HFrEF patients. BMC Nephrol 2020;21:179 BMI-43).  Back to cited text no. 16
Hein AM, Scialla JJ, Edmonston D, Cooper LB, DeVore AD, Mentz RJ. Medical management of heart failure with reduced ejection fraction in patients with advanced renal disease. JACC Heart Fail 2019;7:371-82.  Back to cited text no. 17
Yancy CW, Januzzi JL Jr, Allen LA, Butler J, Davis LL, Fonarow GC, et al. 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: Answers to 10 pivotal issues about heart failure with reduced ejection fraction: A report of the American College of Cardiology Task Force on Expert Consensus Decision. J Am Coll Cardiol2018;71:201-30.  Back to cited text no. 18


  [Table 1]


Print this article  Email this article


Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07