Advertisment

Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:637

Official publication of the Indian Society of Nephrology

Ahead of print articles
CASE SERIES
Ahead of print publication  

Cardiovascular complications in kidney transplant recipients with COVID-19: A case series


 Department of Nephrology, Seth G. S. Medical College and KEM Hospital, Mumbai, Maharashtra, India

Date of Submission04-Dec-2021
Date of Acceptance14-Feb-2022
Date of Web Publication02-Jul-2022

Correspondence Address:
Ankita Patil,
Assistant Professor, Department of Nephrology, Ward No. 34A, Old Building Third Floor, Seth G. S. Medical College and KEM Hospital, Parel, Mumbai - 400 012, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijn.ijn_503_21

  Abstract 


Kidney transplant recipients (KTRs) are at a higher risk for developing severe COVID-19 which can be associated with cardiovascular complications. We studied five KTRs recipients infected with COVID-19 who developed severe cardiovascular complications. Two patients presented with ST segment myocardial infarction and two with clinically suspected myocarditis. One patient presented with atrial fibrillation. Two of these patients developed cardiogenic shock. Inflammatory markers were at peak during the event in four of these who had presented with severe COVID-19. Coronary angiography done in two patients with STEMI did not reveal any evidence of atherosclerotic coronary artery disease. Also, based on the cardiovascular (CV) risk estimation by Framingham score, four patients had low CV risk and one patient had intermediate CV risk. All five patients survived. Even with low CV risk, KTRs can develop myocardial injury and arrhythmias solely because of severe COVID-19.

Keywords: Cardiovascular disease, COVID-19, kidney transplant, myocardial injury



How to cite this URL:
Patil A, Rao N, Kumar K, Modi T, Gandhi C, Deb S, Bose S, Saxena N, Katyal A, Thakare S, Pajai AE, Bajpai D, Jamale T. Cardiovascular complications in kidney transplant recipients with COVID-19: A case series. Indian J Nephrol [Epub ahead of print] [cited 2022 Aug 19]. Available from: https://www.indianjnephrol.org/preprintarticle.asp?id=349363


  Introduction Top


Increased prevalence of myocardial injury and arrhythmias have been reported in association with COVID-19. Myocardial injury in association with COVID-19 can be both ischemic and nonischemic secondary to a severe inflammatory response syndrome (SIRS) and direct viral cytotoxicity.[1] Acute myocardial injury is defined as an elevation of high-sensitivity cardiac troponin above the 99th percentile of its upper limit of normal and/or evidence of new electrocardiographic and/or echocardiographic abnormalities.[2] Along with the cytokine storm due to severe COVID-19,[3] the presence of traditional risk factors such as hypertension (HTN), diabetes, obesity, dyslipidemia, pre-existing cardiovascular disease, increased recipient age, non-traditional risk factors such as chronic allograft injury, proteinuria, dialysis vintage prior to transplantation, rejections make them vulnerable for the development of severe cardiovascular complications due to COVID-19.[4] Cardiovascular (CV) disease is common in kidney transplant recipients (KTRs) making them susceptible to sudden cardiac death. Hence, early diagnosis, cardiac monitoring and appropriate intervention is essential. There is no available literature yet about details about these severe cardiovascular complications in KTRs.


  Case series Top


Ninety-five KTRs developed COVID-19 from March 2020 till July 2021 at a tertiary care centre in western India. We studied five (5.3%) of these who presented with severe cardiovascular complications. The criteria for diagnosis of clinically suspected myocarditis was one or more of the clinical profiles (acute coronary syndrome-like, new onset or worsening heart failure or a life-threatening arrhythmia or cardiogenic shock) described by the European Society of Cardiology (ESC)[5] with at least one of either raised biomarkers of cardiac injury, electrocardiogram (ECG) findings suggestive of cardiac injury or abnormal cardiac function on echocardiogram (2D echo).[6] Cardiogenic shock was defined as an ineffective cardiac output due to a primary cardiac dysfunction resulting in inadequate end-organ perfusion. Acute allograft dysfunction was defined as an increase in serum creatinine ≥0.3 mg/dl from baseline at diagnosis of COVID-19. Framingham Risk Score[7] was used to estimate the 10-year CV risk of these patients.

The median (IQR) age was 49 (41.5-49.5) years will all five of them being males. All were living-donor related transplant recipients and were on triple or dual immunosuppression at the onset of COVID-19. With respect to presence of traditional risk factors, three out of five had HTN, one had new-onset diabetes after transplant (NODAT) and two had dyslipidemia. Based on the CV risk estimation by Framingham score, four patients had a low CV risk and one patient had an intermediate CV risk. None of them had prior evidence of coronary artery disease (CAD). Two out of five had baseline chronic allograft injury. Four of these had severe COVID-19. Two patients presented with ST segment myocardial infarction (STEMI), two with clinically suspected myocarditis and one with atrial fibrillation. Two of these five developed cardiogenic shock. These manifestations occurred over Day 6- Day 51 post-onset of COVID-19 with Day 0 being the day of diagnosis of COVID-19. Inflammatory markers were at peak at the time of the cardiac event in four of these patients. Acute allograft dysfunction was present in all five patients which recovered at discharge. All five patients survived. Coronary angiography (CAG) was done in two of the patients who presented with myocardial infarction did not show evidence of atherosclerosis. The characteristics of the five patients are summarized in [Table 1] and [Table 2]. Their ECG findings are depicted in [Figure 1], [Figure 2], [Figure 3].
Table 1: Description of our five cases of COVID-19-associated cardiovascular complications

Click here to view
Table 2: Cardiovascular risk factors in our five cases of COVID-19-associated cardiovascular complications

Click here to view
Figure 1: Electrocardiogram (ECG) findings of Case 2: ST segment elevation in leads V2–V5, II, III, aVF

Click here to view
Figure 2: Electrocardiogram (ECG) findings of Case 4: new ST segment depression and T wave inversion in I, aVL, V4–V6

Click here to view
Figure 3: Electrocardiogram (ECG) findings of Case 5: atrial fibrillation

Click here to view



  Discussion Top


We hereby report a series of five KTRs presenting with severe cardiovascular complications in association with COVID-19. All five patients survived to discharge. To our knowledge, this is the first report of severe cardiovascular complications in KTRs. The prevalence of acute myocardial injury in association with COVID-19 globally has been reported to be 15-38%.[1],[8],[9],[10] Ischemic myocardial injury due to severe COVID-19 can result either due to plaque rupture, coronary spasm, microthrombi secondary to SIRS, disseminated intravascular coagulation, cytokine storm (Type 1 MI), or due to myocardial oxygen imbalance (Type 2 MI).[1] Myocardial infarction (STEMI) in association with COVID-19 has been reported in total 129 patients as case reports or series.[11],[12],[13] Most common risk factors in these patients were age >60 years, HTN in 94 (73%), prior CAD in 68 (53%), diabetes mellitus in 50 (38%), chronic kidney disease in 45 (35%), dyslipidemia in 15 (12%), and obesity in 2 (1.6%).[11],[12],[13] One-hundred and seven (83%) of these had evidence of occlusive CAD and 42 (33%) had peak inflammatory markers at the time of STEMI.[14] Our two patients with ST segment myocardial infarction were younger (mean age 49 years) and had lesser traditional risk factors with no prior history of CAD, suggesting that the ischemic myocardial injury was most probably related to COVID-19. Also, in both our patients with STEMI, CAG did not reveal atherosclerosis, suggesting a COVID-19-related thrombotic event as the most likely cause of myocardial injury. This finding is similar to that reported from the available literature on COVID-19-associated STEMI that a culprit lesion is not identifiable by coronary angiography in 40% of patients.[14] Both these patients had peak inflammatory markers at the time of myocardial infarction.

Acute myocarditis with COVID-19 has been reported in 86 patients as case reports or series.[15],[16],[17],[18] The median age was 48 years in these patients with inflammatory markers being at peak in 35 (64%) at the time of myocarditis.[15],[16],[17],[18] Direct viral cytotoxicity along with an inflammatory cascade is said to be responsible for nonischemic injury such as acute myocarditis.[1] Both our cases with clinically suspected myocarditis were of a similar age (mean 49 years) with peak inflammatory markers at the time of the event. The prevalence of atrial fibrillation in association with severe COVID-19 has been reported to be 19%,[19] especially in ages ≥60 years. Hypoxia and electrolyte abnormalities during severe COVID-19 contribute to the development of acute arrhythmias.[19] Also, it has been suggested that the SARS-CoV-2 virus directly contributes to atrial fibrillation by attaching to pericytes, cells responsible for microvascular integrity of cardiac tissue resulting in the release of growth factors, causing cardiac tissue inflammation and altering atrial cellular electrophysiology.[20] Our patient who had a new-onset atrial fibrillation was younger (35-year-old), had no prior CAD or valvular heart disease, and had presented with severe COVID-19. From the available literature, myocardial injury was reported to be coinciding with peak levels of inflammatory markers (C-reactive protein, lactate dehydrogenase, D-dimer, interleukin 6) and lymphopenia which was evident in four of our patients.[14],[15],[16],[17],[18] In our series, these manifestations occurred over day 6–day 51 post-onset of COVID-19 with day 0 being the day of diagnosis of COVID-19 as compared to that reported in the literature to be over day 0–day 30.[11],[12],[13],[14],[15],[16],[17],[18] Development of CV complications in association with COVID-19 has been shown to significantly increase mortality.[21] All five of our patients survived. They were treated in dedicated high dependency renal units with close cardiac monitoring. As four of our patients had low CV risk and one had an intermediate risk (Framingham risk score), it is very likely that these events were related to COVID-19. Retrospective data collection and the absence of CMR/myocardial biopsy along with coronary angiography in those with clinically suspected myocarditis remain notable limitations.

To conclude, even with low CV risk, KTRs can develop both ischemic and nonischemic myocardial injury and arrhythmias solely because of severe COVID-19. A high index of suspicion, cardiac monitoring, and prompt management is essential to prevent mortality.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395:1054-62.  Back to cited text no. 1
    
2.
Thygesen K, Alpert J, Jaffe A, Chaitman B, Bax J, Morrow D, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 2018;72:2231-64.  Back to cited text no. 2
    
3.
Marinaki S, Tsiakas S, Korogiannou M, Grigorakos K, Papalois V, Boletis I. A systematic review of COVID-19 infection in kidney transplant recipients: A universal effort to preserve patients' lives and allografts. J Clin Med 2020;9:2986. doi: 10.3390/jcm9092986.  Back to cited text no. 3
    
4.
Vanrenterghem Y, Claes K, Montagnino G, Fieuws S, Maes B, Villa M, et al. Risk factors for cardiovascular events after successful renal transplantation. Transplantation 2008;85:209-216.  Back to cited text no. 4
    
5.
Caforio A, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix S, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 2013;34:2636-48.  Back to cited text no. 5
    
6.
Sagar S, Liu P, Cooper L. Myocarditis. Lancet 2012;379:738-47.  Back to cited text no. 6
    
7.
D'Agostino R, Vasan R, Pencina M, Wolf P, Cobain M, Massaro J, et al. General cardiovascular risk profile for use in primary care. Circulation 2008;117:743-53.  Back to cited text no. 7
    
8.
Li J, Han T, Woodward M, Anderson C, Zhou H, Chen Y, et al. The impact of 2019 novel coronavirus on heart injury: A systematic review and meta-analysis. Prog Cardiovasc Dis 2020;63:518-24.  Back to cited text no. 8
    
9.
Zou F, Qian Z, Wang Y, Zhao Y, Bai J. Cardiac injury and COVID-19: A systematic review and meta-analysis. CJC Open 2020;2:386-94.  Back to cited text no. 9
    
10.
Vakhshoori M, Heidarpour M, Shafie D, Taheri M, Rezaei N, Sarrafzadegan N. Acute cardiac injury in COVID-19: A systematic review and meta-analysis. Arch Iran Med 2020;23:801-12.  Back to cited text no. 10
    
11.
Capaccione K, Leb J, D'souza B, Utukuri P, Salvatore M. Acute myocardial infarction secondary to COVID-19 infection: A case report and review of the literature. Clin Imaging 2021;72:178-82.  Back to cited text no. 11
    
12.
Bangalore S, Sharma A, Slotwiner A, Yatskar L, Harari R, Shah B, et al. ST-segment elevation in patients with covid-19 — A case series. N Engl J Med 2020;382:2478-80.  Back to cited text no. 12
    
13.
Hamadeh A, Aldujeli A, Briedis K, Tecson K, Sanz-Sánchez J, Al dujeili M, et al. Characteristics and outcomes in patients presenting with COVID-19 and ST-segment elevation myocardial infarction. Am J Cardiol 2020;131:1-6. doi: 10.1016/j.amjcard. 2020.06.063.  Back to cited text no. 13
    
14.
Burkert F, Niederreiter L, Dichtl W, Mayr A, Virgolini I, Klauser A, et al. Case report of a COVID-19-associated myocardial infarction with no obstructive coronary arteries: The mystery of the phantom embolus or local endothelitis. Eur Heart J Case Rep 2021;5:ytaa521. doi: 10.1093/ehjcr/ytaa521.  Back to cited text no. 14
    
15.
Bernal-Torres W, Herrera-Escandón Á, Hurtado-Rivera M, Plata-Mosquera C. COVID-19 fulminant myocarditis: A case report. Eur Heart J Case Rep 2020;4:1-6.  Back to cited text no. 15
    
16.
Abellas Sequeiros M, Sanmartin Fernandez M, Cosin Sales J, Corbi Pascual M, Escudier Villa J, Ortiz Cortes C, et al. Acute myocarditis in COVID19 patients. Clinical features, severity and outcomes. Results from Spanish multicenter registry car-COVID19. Eur Heart J Acute Cardiovasc Care 2021;10(Suppl 1):zuab020-188.  Back to cited text no. 16
    
17.
Laganà N, Cei M, Evangelista I, Cerutti S, Colombo A, Conte L, et al. Suspected myocarditis in patients with COVID-19. Medicine 2021;100:e24552.  Back to cited text no. 17
    
18.
Rathore S, Rojas G, Sondhi M, Pothuru S, Pydi R, Kancherla N, et al. Myocarditis associated with Covid-19 disease: A systematic review of published case reports and case series. Int J Clin Practice 2021;75:e14470. doi: 10.1111/ijcp. 14470.  Back to cited text no. 18
    
19.
Mountantonakis S, Saleh M, Fishbein J, Gandomi A, Lesser M, Chelico J, et al. Atrial fibrillation is an independent predictor for in-hospital mortality in patients admitted with SARS-CoV-2 infection. Heart Rhythm 2021;18:501-7.  Back to cited text no. 19
    
20.
Lazzerini P, Boutjdir M, Capecchi P. COVID-19, arrhythmic risk, and inflammation. Circulation 2020;142:7-9.  Back to cited text no. 20
    
21.
Zuin M, Rigatelli G, Zuliani G, Bilato C, Zonzin P, Roncon L. Incidence and mortality risk in coronavirus disease 2019 patients complicated by acute cardiac injury: Systematic review and meta-analysis. J Cardiovasc Med 2020;21:759-64.  Back to cited text no. 21
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2]



 

 
Top
 
 
  Search
 
  

 
  In this article
   Abstract
  Introduction
  Case series
  Discussion
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed151    
    PDF Downloaded3    

Recommend this journal

Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07